GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Temperature variability assessment at vineyard scale: control of data accuracy and data processing protocol

Temperature variability assessment at vineyard scale: control of data accuracy and data processing protocol

Abstract

Context and purpose of the study – Climatic variability studies at fine scale have been developed in recent years with the reduction of material cost and the development of competitive miniaturized sensors. This work is forming part the LIFE-ADVICLIM project, of which one of the objectives is to model spatial temperature variability at vineyard scale. In the Bordeaux pilot site, a large network of data loggers has been set up to record temperature close to the vine canopy. The reduced distance between plant foliage and measurement equipment raises specific issues and leads to an increased rate of outliers compared to data retrieved from classical weather stations. Some of these were detected during data analysis, but others could not be easily identified. The present study aims to address the issue of data quality control and provide recommendations for data processing in climatic studies at fine scale.
Material and methods – Temperature variability at vineyard scale was assessed from a network of 90 temperature stations set up in Saint-Emilion, Pomerol, and their satellite appellations. In order to test the accuracy of the measurement, 2 temperature sensors T1 and T2 (Tinytag talk 2, Gemini UK) have been connected to each temperature station and programmed to record hourly minimum and maximum temperature. The accuracy given by the constructor for this material is 0.4°C. The difference between the 2 sensors for each temperature station was analyzed during the 2017 campaign and compared. A classical meteorological station installed in Saint-Emilion (Meteo France) provided the information on climatic condition in the pilot site. A temperature station was also set up next to this meteorological station to assess both the impact of canopy and the type of material on temperature. Raw temperature data and bioclimatic indices like Winkler index were analyzed.
Results – Differences exceeding material accuracy have been detected over the whole network for several locations and dates. Average of differences is higher for maximum temperature than minimum when the whole year is taken into account. Differences can change Winkler index up to 106 degree.days for the same temperature station. Seasonal effect was observed for minimum and maximum temperature with higher differences between T1 and T2 during the winter.
Significant difference on maximum temperature was observed between data from the classical meteorological station and temperature recorded by the neighboring data logger installed in the canopy. Temperature recorded by temperature station is 1 to 4 °C warmer because the solar shield is less ventilated. A seasonal effect was observed, with higher difference recorded during the summer, which induced significant differences between calculated degree days. To eliminate confusion between degree days recorded by these 2 systems, a “Canopy Winkler Index” was created for the Winkler Index constructed with the temperature station, located inside the canopy.
Careful data processing is needed to obtain accurate temperatures from miniaturized temperature station located inside the canopy. Installation of 2 sensors for each temperature station is recommended to control and detect outliers. An automatic data processing system is under development to detect and replace outliers.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Théo PETITJEAN1*, Laure de RESSEGUIER1, Hervé QUENOL², Cornelis van LEEUWEN1

1 EGFV, Bordeaux Sciences Agro, INRA, Univ. Bordeaux, F-33882 Villenave d’Ornon, 
² LETG-Rennes, CNRS-UMR 6554, Université Rennes-2, Place Recteur H. Le Moal, 35043 Rennes cedex, France

Contact the author

Keywords

Fine scale, Temperature variability, Temperature stations, Data accuracy, Data processing , Vineyards

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

EXTRACTIBLE COMPOUNDS FROM MICROAGGLOMERATED CORK STOPPERS

After bottling, the wine continues to evolve during storage. The choice of the stopper is an important factor in this evolution. In addition to the oxygen permeability of the closure, the migration of stopper compounds into the wine can also have an impact on the wine organoleptic properties. Many studies have shown that transfers of volatile compounds from the stoppers into the wine can happen depending on the type of closure used (1). Moreover, when cork-made stoppers are used, the migration of phenolic compounds from the stopper into the wine can also occur (2, 3).

Délimitation des terroirs dans les A.O. Rueda et Toro (Castilla y León-Espagne)

La délimitation et la caractérisation des zones viticoles posent en Espagne des problèmes spécifiques non seulement dus aux caractéristiques propres au territoire mais aussi à la dimension, la distribution et l’indice d’occupation viticole dans les appellations d’origine.

Phenological characterization of a wide range of Vitis Vinifera varieties

In order to study the impact of climate change on Bordeaux grape varieties and to assess the adaptation capacities of candidates to the grape varieties of this wine region to the new climatic conditions, an experimental block design composed of 52 grape varieties was set up in 2009 at the INRAE Bordeaux Aquitaine center. Among the many parameters studied, the three main phenological stages of the vine (budburst, flowering and veraison) have been closely monitored since 2012. Observations for each year, stage and variety were carried out on four independent replicates. Precocity indices have been calculated from the data obtained over the 2012-2021 period (Barbeau et al. 1998). This work allowed to group the phenological behaviour of the grapevine varieties, not only based on the timing of the subsequent developmental stages, but also on the overall precocity of the cycle and the total length of the cycle between budburst and veraison. Results regarding the variability observed among the different grape varieties for these phenological stages are presented as heat maps.

Interpreting wine aroma: from aroma volatiles to the aromatic perception

Wine contains so many odorants that all its olfaction-related perceptions are, inevitably, the result of the interaction between many odorants.

Spectral characterisation of fungal diseases on Vitis vinifera leaves

Aims: The aims of this study were to (1) detect alterations in the reflectance spectra of vines with fungal diseases, (2) map these alterations, and (3) determine the best wavelengths which may be used as early indicators of fungal diseases in vines.