GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Temperature variability assessment at vineyard scale: control of data accuracy and data processing protocol

Temperature variability assessment at vineyard scale: control of data accuracy and data processing protocol

Abstract

Context and purpose of the study – Climatic variability studies at fine scale have been developed in recent years with the reduction of material cost and the development of competitive miniaturized sensors. This work is forming part the LIFE-ADVICLIM project, of which one of the objectives is to model spatial temperature variability at vineyard scale. In the Bordeaux pilot site, a large network of data loggers has been set up to record temperature close to the vine canopy. The reduced distance between plant foliage and measurement equipment raises specific issues and leads to an increased rate of outliers compared to data retrieved from classical weather stations. Some of these were detected during data analysis, but others could not be easily identified. The present study aims to address the issue of data quality control and provide recommendations for data processing in climatic studies at fine scale.
Material and methods – Temperature variability at vineyard scale was assessed from a network of 90 temperature stations set up in Saint-Emilion, Pomerol, and their satellite appellations. In order to test the accuracy of the measurement, 2 temperature sensors T1 and T2 (Tinytag talk 2, Gemini UK) have been connected to each temperature station and programmed to record hourly minimum and maximum temperature. The accuracy given by the constructor for this material is 0.4°C. The difference between the 2 sensors for each temperature station was analyzed during the 2017 campaign and compared. A classical meteorological station installed in Saint-Emilion (Meteo France) provided the information on climatic condition in the pilot site. A temperature station was also set up next to this meteorological station to assess both the impact of canopy and the type of material on temperature. Raw temperature data and bioclimatic indices like Winkler index were analyzed.
Results – Differences exceeding material accuracy have been detected over the whole network for several locations and dates. Average of differences is higher for maximum temperature than minimum when the whole year is taken into account. Differences can change Winkler index up to 106 degree.days for the same temperature station. Seasonal effect was observed for minimum and maximum temperature with higher differences between T1 and T2 during the winter.
Significant difference on maximum temperature was observed between data from the classical meteorological station and temperature recorded by the neighboring data logger installed in the canopy. Temperature recorded by temperature station is 1 to 4 °C warmer because the solar shield is less ventilated. A seasonal effect was observed, with higher difference recorded during the summer, which induced significant differences between calculated degree days. To eliminate confusion between degree days recorded by these 2 systems, a “Canopy Winkler Index” was created for the Winkler Index constructed with the temperature station, located inside the canopy.
Careful data processing is needed to obtain accurate temperatures from miniaturized temperature station located inside the canopy. Installation of 2 sensors for each temperature station is recommended to control and detect outliers. An automatic data processing system is under development to detect and replace outliers.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Théo PETITJEAN1*, Laure de RESSEGUIER1, Hervé QUENOL², Cornelis van LEEUWEN1

1 EGFV, Bordeaux Sciences Agro, INRA, Univ. Bordeaux, F-33882 Villenave d’Ornon, 
² LETG-Rennes, CNRS-UMR 6554, Université Rennes-2, Place Recteur H. Le Moal, 35043 Rennes cedex, France

Contact the author

Keywords

Fine scale, Temperature variability, Temperature stations, Data accuracy, Data processing , Vineyards

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Management of cover plants impacted the composition of Cabernet Sauvignon red wines in a temperate region of Brazil

– Several practices can be applied to vineyards in order to ensure good healthy for grapevines, adequate yield and fruit quality. Among them, the use of cover crops is a relevant option for soil management. It increases the organic matter, improves water infiltration, reduces risks of soil erosion and greenhouse gas emissions, in addition improving biodiversity in the vineyard.

Genetic identification of 200-year-old Serbian grapevine herbarium

Botanist Andreas Raphael Wolny collected a grapevine herbarium from 1812-1824 in Sremski Karlovci (wine region of Vojvodina, Serbia), which represents local cultivated grapevine diversity before the introduction of grape phylloxera in the region. The herbarium comprises over 100 samples organized into two subcollections based on berry colour (red and white varieties), totaling 47 different grape varieties. The objective of this study was to investigate the historical varietal assortment of Balkan and Pannonian winegrowing areas with long viticulture traditions.

AGING PATTERNS OF VARIETAL VOLATILE PROFILES OF WHITE WINES: A CASE STUDY ON 18 ITALIAN VARIETAL WHITE WINES

During wine aging many compositional changes take place. In particular, aroma undergoes dramatic modifications through a wide range of reactions that to date are only partly understood. Italy owns one of the largest ampelographic heritages worldwide, with over three-hundred different varieties. Among these, many white grapes are employed for the production of dry still white wines. Some of these wines are consumed young while others are more prone to aging. For many of these wines, the aging patterns related to volatile composition are still unknown.

Preliminary study of the influence of ripening on the polysaccharide content of different red grape varieties

Grape skin has a barrier and protective function in grapes. Cell wall of grape skins is mainly composed of polysaccharides such as pectins, celulloses and hemicelluloses and structural proteins. Terroir, variety and changes during ripening can affect the content of polysaccharides in grapes. The aim of this study was to evaluate the content of polysaccharides (PS) in grapes along the ripening process. Three red grape varieties were studied: Garnacha (G), Tempranillo (T) and Prieto Picudo (PP).

Recent advances in measuring, estimating, and forecasting grapevine yield and quality

Grapevine yield and fruit quality are two major drivers of input allocation and, ultimately, revenue for grape producers. Because yield and fruit quality vary substantially from year-to-year and within a single block, opportunities exist for optimization via precision management activities that could lead to more profitable and sustainable grape production. Here, we review recent advances in the techniques and technology used to measure, estimate, and forecast grapevine yield and fruit quality. First, we discuss direct “measurement” of yield and quality (i.e. ground-truth data generation), with an emphasis on potential for scalability and automation. Second, we discuss technology and techniques that do not directly measure yield and quality, but use correlated measurements for their estimation.