GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Temperature variability assessment at vineyard scale: control of data accuracy and data processing protocol

Temperature variability assessment at vineyard scale: control of data accuracy and data processing protocol

Abstract

Context and purpose of the study – Climatic variability studies at fine scale have been developed in recent years with the reduction of material cost and the development of competitive miniaturized sensors. This work is forming part the LIFE-ADVICLIM project, of which one of the objectives is to model spatial temperature variability at vineyard scale. In the Bordeaux pilot site, a large network of data loggers has been set up to record temperature close to the vine canopy. The reduced distance between plant foliage and measurement equipment raises specific issues and leads to an increased rate of outliers compared to data retrieved from classical weather stations. Some of these were detected during data analysis, but others could not be easily identified. The present study aims to address the issue of data quality control and provide recommendations for data processing in climatic studies at fine scale.
Material and methods – Temperature variability at vineyard scale was assessed from a network of 90 temperature stations set up in Saint-Emilion, Pomerol, and their satellite appellations. In order to test the accuracy of the measurement, 2 temperature sensors T1 and T2 (Tinytag talk 2, Gemini UK) have been connected to each temperature station and programmed to record hourly minimum and maximum temperature. The accuracy given by the constructor for this material is 0.4°C. The difference between the 2 sensors for each temperature station was analyzed during the 2017 campaign and compared. A classical meteorological station installed in Saint-Emilion (Meteo France) provided the information on climatic condition in the pilot site. A temperature station was also set up next to this meteorological station to assess both the impact of canopy and the type of material on temperature. Raw temperature data and bioclimatic indices like Winkler index were analyzed.
Results – Differences exceeding material accuracy have been detected over the whole network for several locations and dates. Average of differences is higher for maximum temperature than minimum when the whole year is taken into account. Differences can change Winkler index up to 106 degree.days for the same temperature station. Seasonal effect was observed for minimum and maximum temperature with higher differences between T1 and T2 during the winter.
Significant difference on maximum temperature was observed between data from the classical meteorological station and temperature recorded by the neighboring data logger installed in the canopy. Temperature recorded by temperature station is 1 to 4 °C warmer because the solar shield is less ventilated. A seasonal effect was observed, with higher difference recorded during the summer, which induced significant differences between calculated degree days. To eliminate confusion between degree days recorded by these 2 systems, a “Canopy Winkler Index” was created for the Winkler Index constructed with the temperature station, located inside the canopy.
Careful data processing is needed to obtain accurate temperatures from miniaturized temperature station located inside the canopy. Installation of 2 sensors for each temperature station is recommended to control and detect outliers. An automatic data processing system is under development to detect and replace outliers.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Théo PETITJEAN1*, Laure de RESSEGUIER1, Hervé QUENOL², Cornelis van LEEUWEN1

1 EGFV, Bordeaux Sciences Agro, INRA, Univ. Bordeaux, F-33882 Villenave d’Ornon, 
² LETG-Rennes, CNRS-UMR 6554, Université Rennes-2, Place Recteur H. Le Moal, 35043 Rennes cedex, France

Contact the author

Keywords

Fine scale, Temperature variability, Temperature stations, Data accuracy, Data processing , Vineyards

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Understanding wine as a sensory, emotional, and cognitive experience to promote and communicate conscious consumption

In the complex scenario that the wine industry and its promotion are currently facing, this research proposes a theoretical expansion of the traditional model used to understand the wine experience, namely the classic sensory, emotional and cognitive triad, moving toward a multidimensional approach that also incorporates cultural, symbolic and contextual dimensions in order to comprehend the conscious experience.

Impact of grape ripening and post-harvest withering on must composition and fermentation kinetics

Postharvest dehydration is a widely employed technique in winemaking to enhance sugar concentration and secondary metabolites from grapes. Different grape varieties exhibit varying responses in terms of dehydration rate and the resulting chemical composition.

EFFECTS OF WINEMAKING FACTORS AND AGEING ON THE POLYPHENOLIC AND COLORIMETRIC PROFILES IN RED WINES PRONE TO COLOUR INSTABILITY

The effects of (A) grape freezing, and (B) malolactic fermentation, have been evaluated on the chemical and colorimetric profiles of red wines from Schiava grossa cv. grapes, thus prone to colour instability. The aim was to observe if specific variables (e.g. grape freezing) could improve the extraction and stability of pigments. The samples were studied from musts up to twelve months in bottle. The study was conducted with independent parallel micro-vinifications (12 = 4 theses x 3 replicates) under strictly-controlled conditions.

applicazione dei metodi isotopici e dell’analisi sensoriale negli studi sull’origine dei vini

Traceability of agro-alimentary products is very important to certify their origin. This work aimed to characterize wines obtained by the same cultivar (Nero d’Avola and Fiano) – grown in regions with different soil and climate conditions during three vintages (2003-2005) – employing isotopic analyses (NMR and IRMS) and sensory analyses.

Polyphenols in kombucha: impact of infusion time on extraction and investigation of their behavior during “fermentation”

Kombucha is a non-alcoholic beverage made of sugared tea that is transformed by a symbiotic consortium of yeasts and bacteria. Polyphenols are expected to be responsible of several health benefits attributed to kombucha consumption, among other metabolites. This study investigated the impact of tea infusion time and of kombucha “fermentation”, on total phenolic content,