GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Temperature variability assessment at vineyard scale: control of data accuracy and data processing protocol

Temperature variability assessment at vineyard scale: control of data accuracy and data processing protocol

Abstract

Context and purpose of the study – Climatic variability studies at fine scale have been developed in recent years with the reduction of material cost and the development of competitive miniaturized sensors. This work is forming part the LIFE-ADVICLIM project, of which one of the objectives is to model spatial temperature variability at vineyard scale. In the Bordeaux pilot site, a large network of data loggers has been set up to record temperature close to the vine canopy. The reduced distance between plant foliage and measurement equipment raises specific issues and leads to an increased rate of outliers compared to data retrieved from classical weather stations. Some of these were detected during data analysis, but others could not be easily identified. The present study aims to address the issue of data quality control and provide recommendations for data processing in climatic studies at fine scale.
Material and methods – Temperature variability at vineyard scale was assessed from a network of 90 temperature stations set up in Saint-Emilion, Pomerol, and their satellite appellations. In order to test the accuracy of the measurement, 2 temperature sensors T1 and T2 (Tinytag talk 2, Gemini UK) have been connected to each temperature station and programmed to record hourly minimum and maximum temperature. The accuracy given by the constructor for this material is 0.4°C. The difference between the 2 sensors for each temperature station was analyzed during the 2017 campaign and compared. A classical meteorological station installed in Saint-Emilion (Meteo France) provided the information on climatic condition in the pilot site. A temperature station was also set up next to this meteorological station to assess both the impact of canopy and the type of material on temperature. Raw temperature data and bioclimatic indices like Winkler index were analyzed.
Results – Differences exceeding material accuracy have been detected over the whole network for several locations and dates. Average of differences is higher for maximum temperature than minimum when the whole year is taken into account. Differences can change Winkler index up to 106 degree.days for the same temperature station. Seasonal effect was observed for minimum and maximum temperature with higher differences between T1 and T2 during the winter.
Significant difference on maximum temperature was observed between data from the classical meteorological station and temperature recorded by the neighboring data logger installed in the canopy. Temperature recorded by temperature station is 1 to 4 °C warmer because the solar shield is less ventilated. A seasonal effect was observed, with higher difference recorded during the summer, which induced significant differences between calculated degree days. To eliminate confusion between degree days recorded by these 2 systems, a “Canopy Winkler Index” was created for the Winkler Index constructed with the temperature station, located inside the canopy.
Careful data processing is needed to obtain accurate temperatures from miniaturized temperature station located inside the canopy. Installation of 2 sensors for each temperature station is recommended to control and detect outliers. An automatic data processing system is under development to detect and replace outliers.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Théo PETITJEAN1*, Laure de RESSEGUIER1, Hervé QUENOL², Cornelis van LEEUWEN1

1 EGFV, Bordeaux Sciences Agro, INRA, Univ. Bordeaux, F-33882 Villenave d’Ornon, 
² LETG-Rennes, CNRS-UMR 6554, Université Rennes-2, Place Recteur H. Le Moal, 35043 Rennes cedex, France

Contact the author

Keywords

Fine scale, Temperature variability, Temperature stations, Data accuracy, Data processing , Vineyards

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Correlative study between degradation of rosé wine under accelerated conditions and under normal conditions

Several studies have tried to develop different methods to study the photodegradation of wine in an accelerated way, trying to elucidate the effect of light on the wine compounds[1]. In a previous study, our team developed a chamber that speeds up the photodegradation of rosé wine[2]. In the present work we have tried to establish a correlation between irradiation times in accelerated conditions and the natural exposure to the cycles of light that usually exist in markets or at home.

Preliminary study of extraction of polysaccharides from pomace by high powered ultrasonic combined with enzymes

Red grape pomace can be an important source of polysaccharides, but currently they are little studied and even less with viable and environmental extraction processes (green extraction). These green techniques must be able to break the cell wall so that the compounds contained in the cells, including polysaccharides, are released and can have a great influence on extraction yields, the chemical structure of polysaccharides and applications in wines. Amongst the emerging green techniques most applied to the extraction of bioactive compounds, such as polysaccharides, high-power ultrasound (US) and enzyme-assisted extraction stand out.

Radiation-associated effects on regulated deficit irrigation management in grapevine cv. Cabernet Sauvignon

The main challenge of regulated deficit irrigation (RDI) research is to isolate the factors that come with RDI, the direct effect of plant water status from the indirect ones like increased radiation and temperature changes on the cluster zone. This study aims to isolate the effects of vine water status from the effects of increased radiation on the phenolic composition of grapes subjected to RDI.
A three-year study on an RDI experiment where radiation was controlled was implemented in a commercial vineyard of Cabernet Sauvignon in Chile. Four RDI treatments based on partial evapotranspiration (ET) irrigation were established. Irrigation treatments were 100% ET, 70% ET, 50-100% ET (50% ET before veraison and 100% ET afterward), and 35-100% ET (35% ET before veraison and 100% ET afterward).

Pedological criteria according to the French hierarchy of vintages, Appellations d’Origine Contrôlée (AOC): study of two toposequences located in the Burgundian “Côte”

The concept of terroir is defined by a set of natural and human factors. On the slopy vineyards of the Burgundian « Côte », the « Appellations d’Origine Contrôlée (AOC) » spread out according to the slope in their order of quality : « AOC Grand Cru » at the top, « AOC Premier Cru » and « AOC Village » and « Bourgogne » on the piemont. In order to correlate the hierarchy of the vintages with the evolution of the topographic and pedological criteria, two toposequences were studied, in Gevrey Chambertin (« Côte de Nuits ») and Aloxe Corton (« Côte de Beaune »).

Vintage by vine interactions most strongly influence Pinot noir grape and wine composition in New Zealand

Vine genetics, fruit maturity, region and vineyard are perceived as factors that strongly influence Pinot noir grape and wine composition. Our study aims to understand the relationship between grape (and ultimately wine) composition and the physical appearance and performance characteristics of a vine (i.e. vine ideotype). Our experimental approach controlled these variables by