GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Temperature variability assessment at vineyard scale: control of data accuracy and data processing protocol

Temperature variability assessment at vineyard scale: control of data accuracy and data processing protocol

Abstract

Context and purpose of the study – Climatic variability studies at fine scale have been developed in recent years with the reduction of material cost and the development of competitive miniaturized sensors. This work is forming part the LIFE-ADVICLIM project, of which one of the objectives is to model spatial temperature variability at vineyard scale. In the Bordeaux pilot site, a large network of data loggers has been set up to record temperature close to the vine canopy. The reduced distance between plant foliage and measurement equipment raises specific issues and leads to an increased rate of outliers compared to data retrieved from classical weather stations. Some of these were detected during data analysis, but others could not be easily identified. The present study aims to address the issue of data quality control and provide recommendations for data processing in climatic studies at fine scale.
Material and methods – Temperature variability at vineyard scale was assessed from a network of 90 temperature stations set up in Saint-Emilion, Pomerol, and their satellite appellations. In order to test the accuracy of the measurement, 2 temperature sensors T1 and T2 (Tinytag talk 2, Gemini UK) have been connected to each temperature station and programmed to record hourly minimum and maximum temperature. The accuracy given by the constructor for this material is 0.4°C. The difference between the 2 sensors for each temperature station was analyzed during the 2017 campaign and compared. A classical meteorological station installed in Saint-Emilion (Meteo France) provided the information on climatic condition in the pilot site. A temperature station was also set up next to this meteorological station to assess both the impact of canopy and the type of material on temperature. Raw temperature data and bioclimatic indices like Winkler index were analyzed.
Results – Differences exceeding material accuracy have been detected over the whole network for several locations and dates. Average of differences is higher for maximum temperature than minimum when the whole year is taken into account. Differences can change Winkler index up to 106 degree.days for the same temperature station. Seasonal effect was observed for minimum and maximum temperature with higher differences between T1 and T2 during the winter.
Significant difference on maximum temperature was observed between data from the classical meteorological station and temperature recorded by the neighboring data logger installed in the canopy. Temperature recorded by temperature station is 1 to 4 °C warmer because the solar shield is less ventilated. A seasonal effect was observed, with higher difference recorded during the summer, which induced significant differences between calculated degree days. To eliminate confusion between degree days recorded by these 2 systems, a “Canopy Winkler Index” was created for the Winkler Index constructed with the temperature station, located inside the canopy.
Careful data processing is needed to obtain accurate temperatures from miniaturized temperature station located inside the canopy. Installation of 2 sensors for each temperature station is recommended to control and detect outliers. An automatic data processing system is under development to detect and replace outliers.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Théo PETITJEAN1*, Laure de RESSEGUIER1, Hervé QUENOL², Cornelis van LEEUWEN1

1 EGFV, Bordeaux Sciences Agro, INRA, Univ. Bordeaux, F-33882 Villenave d’Ornon, 
² LETG-Rennes, CNRS-UMR 6554, Université Rennes-2, Place Recteur H. Le Moal, 35043 Rennes cedex, France

Contact the author

Keywords

Fine scale, Temperature variability, Temperature stations, Data accuracy, Data processing , Vineyards

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Pedicel lenticel diversity of cultivars and their influence on cell death and berry shrivel

Shrinking berries are the common symptoms of Berry Shrivel (BS) and Late-Season-Dehydration (LSD) in grapevine cultivars.

Does wine expertise influence semantic categorization of wine odors?

Aromatic characterization is a key issue to enhance wines knowledge. While several studies argue the importance of wine expertise in the ability of performing odor-related sensory tasks, there is still little attention paid to the influence of expertise on the semantic representation of wine odors.

Prove preliminari dl caratterizzazione del vino gutturnio dei colli piacentini

The “GuIturnio dei Colli Piacentini” V.Q.PR.D. results from the vinification of Barbera (55-70%) and Bonarda (30-40%) cultivars, grown in the hilly area of the Piacenza district, identified by the DM 31-07-93 art. 3.
The present work concerns the “zonation” of this area, constituted by 3 valleys Tidone (A), Nure (B) and Arda (C )

INVESTIGATION OF MALIC ACID METABOLIC PATHWAYS DURING ALCOHOLIC FERMENTATION USING GC-MS, LC-MS, AND NMR DERIVED 13C-LABELED DATA

Malic acid has a strong impact on wine pH and the contribution of fermenting yeasts to modulate its concentration has been intensively investigated in the past. Recent advances in yeast genetics have shed light on the unexpected property of some strains to produce large amounts of malic acid (“acidic strains”) while most of the wine starters consume it during the alcoholic fermentation. Being a key metabolite of the central carbohydrate metabolism, malic acid participates to TCA and glyoxylate cycles as well as neoglucogenesis. Although present at important concentrations in grape juice, the metabolic fate of malic acid has been poorly investigated.

Oospore germination dynamics and disease forecasting model for a precision management of downy mildew 

Downy mildew, caused by Plasmopara viticola, is the most economically impactful disease affecting grapevines. This polycyclic pathogen triggers both primary and secondary infection cycles, resulting in significant yield losses when effective disease control measures are lacking. Over the winter, the pathogen survives by forming resting structures, the oospores, derived from sexual reproduction, which produce the inoculum for primary infections. To optimize grapevine downy mildew control and obtain the desired levels of production while minimizing chemical inputs, it is crucial to optimize the timeframe for fungicide application. Disease forecasting models are useful to identify the infection risk.