GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Advancement of grape maturity – comparison between contrasting varieties and regions

Advancement of grape maturity – comparison between contrasting varieties and regions

Abstract

Context and purpose of the study – Grapevine phenology has advanced across many regions, nationally and internationally, in recent decades under the influence of increasing temperatures, resulting in earlier vintages (Jones and Davis, 2000, Petrie and Sadras, 2008, Tomasi et al., 2011, Webb et al., 2011. Earlier vintages have several ramifications for the wine industry. There are direct implications on quality, due to the fruit ripening during the hotter conditions of summer and early autumn, which then impacts grape composition and wine style (Sadras et al., 2013, Buttrose et al., 1971, Mira de Ordũna, 2010). There are also indirect implications where the fruit is perceived to ripen at a faster rate and the crop reach optimum maturity over a shorter period (Coulter et al., 2016). This can result in the grapes being harvested according to the winery processing schedule rather than when they are optimally ripe. This study aims to advance our understanding of the response of different varieties and regions to warming temperatures.

Materials and Methods – This research utilized an historical data set, covering 18 years, multiple varieties and four separate vineyard sites located in different climatic zones in Victoria, Australia. The data were analysed using mixed models to understand differences in the day of year maturity changes between varieties and vineyard sites.

Results – The data analysis suggested that the rate of advancement of day of maturity as a function of seasonal Growing Degree Days (September to March) varies significantly between varieties with some varieties being quite resistant to the temperature increases being experienced. There is some evidence that later ripening varieties are advancing their day of year maturity at a more rapid rate than earlier ripening varieties which helps to explain the vintage compression being observed in Australia. While yield had a significant association with the day of year maturity for some varieties, this was found to be an additional effect and not at the expense of the response to temperature indices. An understanding of how different varieties are responding to changing climates will assist in future planting decisions and determine how to best adapt to climate change. It will also demonstrate the degree of genetic variation available in modern grape varieties in response to changing vineyard climates, which varieties are the most resilient and how they may best be managed.

DOI:

Publication date: September 27, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Wendy CAMERON1, Sigfredo FUENTES1*, EWR BARLOW1, Kate HOWELL1 and Paul R. PETRIE2

1 University of Melbourne, Faculty of Veterinary and Agricultural Sciences, VIC 3010, Australia

2 South Australian Research and Development Institute, Waite Research Precinct, Urrbrae, SA 5064, Australia

Contact the author

Keywords

day of year maturity, growing degree day, spring index

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Towards a European data basis based of advanced multi-isotopic signatures and artificial intelligence: the wine in blue project

Major and trace elements are essential for the development of grapes used for the wine. They are primarily originating from the soil. Some elements are also seldomly added during the wine making process. Therefore, the largest spectrum of major, trace and ultra-trace elements in the final wine product is a good signature of its geographical origin. In the frame of the European tracewindu, we have developed a very original multi-isotopic dilution method using triple quadrupole icp/ms.

isUP-AgrO European project – unlocking the potential for agricultural research on an EU outmost region: boosting ISOPlexis center

The isUP-AgrO project aims to enhance the capability of ISOPlexis – Centre of Sustainable Agriculture and Food Technology, a research unit from the University of Madeira, an outermost region of Portugal.

Les paysages viticoles des régions Vale Dos Vinhedos et Monte Belo (Brésil), un lien avec l’Etrurie

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

High levels of copper and persistent synthetic pesticides in vineyard soils

Downy mildew (Plasmopara viticola), powdery mildew (Erysiphe necator) and bunch rot (Botrytis cinerea) are the most prevalent fungal diseases in viticulture.

Impact of varying ethanol and carbonation levels on the odor threshold of 1,1,6-trimethyl-1,2-dihydronaphtalene (petrol off-flavor) and role of berry size and Riesling clones

1,1,6-trimethyl-1,2-dihydronaphtelene (TDN) evokes the odor of “petrol” in wine, especially in the variety Riesling. Increasing UV-radiation due to climate change intensifies formation of carotenoids in the berry skins and an increase of TDN-precursors1. Exploring new viticultural and oenological strategies to limit TDN formation in the future requires precise knowledge of TDN thresholds in different matrices. Thresholds reported in the literature vary substantially between 2 µg/L up to 20 µg/L2,3,4 due to the use of different methods. As Riesling grapes are used for very different wine styles such as dry, sweet or sparkling wines, it is essential to study the impact of varying ethanol and carbonation levels.