GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Advancement of grape maturity – comparison between contrasting varieties and regions

Advancement of grape maturity – comparison between contrasting varieties and regions

Abstract

Context and purpose of the study – Grapevine phenology has advanced across many regions, nationally and internationally, in recent decades under the influence of increasing temperatures, resulting in earlier vintages (Jones and Davis, 2000, Petrie and Sadras, 2008, Tomasi et al., 2011, Webb et al., 2011. Earlier vintages have several ramifications for the wine industry. There are direct implications on quality, due to the fruit ripening during the hotter conditions of summer and early autumn, which then impacts grape composition and wine style (Sadras et al., 2013, Buttrose et al., 1971, Mira de Ordũna, 2010). There are also indirect implications where the fruit is perceived to ripen at a faster rate and the crop reach optimum maturity over a shorter period (Coulter et al., 2016). This can result in the grapes being harvested according to the winery processing schedule rather than when they are optimally ripe. This study aims to advance our understanding of the response of different varieties and regions to warming temperatures.

Materials and Methods – This research utilized an historical data set, covering 18 years, multiple varieties and four separate vineyard sites located in different climatic zones in Victoria, Australia. The data were analysed using mixed models to understand differences in the day of year maturity changes between varieties and vineyard sites.

Results – The data analysis suggested that the rate of advancement of day of maturity as a function of seasonal Growing Degree Days (September to March) varies significantly between varieties with some varieties being quite resistant to the temperature increases being experienced. There is some evidence that later ripening varieties are advancing their day of year maturity at a more rapid rate than earlier ripening varieties which helps to explain the vintage compression being observed in Australia. While yield had a significant association with the day of year maturity for some varieties, this was found to be an additional effect and not at the expense of the response to temperature indices. An understanding of how different varieties are responding to changing climates will assist in future planting decisions and determine how to best adapt to climate change. It will also demonstrate the degree of genetic variation available in modern grape varieties in response to changing vineyard climates, which varieties are the most resilient and how they may best be managed.

DOI:

Publication date: September 27, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Wendy CAMERON1, Sigfredo FUENTES1*, EWR BARLOW1, Kate HOWELL1 and Paul R. PETRIE2

1 University of Melbourne, Faculty of Veterinary and Agricultural Sciences, VIC 3010, Australia

2 South Australian Research and Development Institute, Waite Research Precinct, Urrbrae, SA 5064, Australia

Contact the author

Keywords

day of year maturity, growing degree day, spring index

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

The potential of some native varieties of Argentina for the production of sparkling wines. Effect of lees contact time 

Grapevine varieties from South-America, commonly known as criollas, originated because of the natural crossbreeding of grapevine varieties brought by the Spaniards. The objective of this work was to evaluate the potential of some varieties to produce sparkling wines considering the effect of lees contact time. The following varieties were used: Moscatel Rosado, Criolla Chica, Pedro Gimenez, Blanca Oval, Canelón, and the European variety Chardonnay (control), planted in the ampelographic collection of EEA Mendoza INTA (Argentina). Pilot-scale vinifications were carried out to obtain the base wines, in 20 L glass containers. The second fermentation was performed through the traditional method.

Soil functional characteristics for qualitative Sangiovese wine production in Tuscany (Italy)

Le but de ce travail est de faire une synthèse des résultats de plusieurs années de recherche en Italie centrale, sur les caractéristiques fonctionnelles du sol pour la production de vin de qualité. Le cépage de référence est le Sangiovese

Geopedological and climatic zoning of northern Malaga vineyards region: Fuente de Piedra, Humilladero and Mollina (southern Spain)

The vineyards placed in the municipal areas of Fuente de Piedra, Humilladero and Mollina constitute a wine-growing important area of the “Zona Norte” of the province of Málaga.

Une méthode d’étude synthétique du paysage

a) wine, a qualitative and user-friendly product, favors a visual support, even for a scientific study because it refers to the image of the terroir, in particular by its visible landscape. b) the vineyard landscape, which is fairly open by definition, favors this type of approach. c) the framework of the Terroir Test conducted by the URVV (INRA – Angers) comprises 15 micro-plots of 100 strains, and requires at this scale precise surveys of the environment, hence systematic shots, of the center of the plot, over 360°, at 50 mm intervals, at 1.70 m from the ground and horizontally.

EFFECT OF DIFFERENT VITICULTURAL AND ENOLOGICAL PRACTICES ON THE PHENOLIC COMPOSITION OF RED WINES

Global climate change is exerting a notable influence on viticulture sector and grape composition. The increase in temperature and the changes in rainfall pattern are causing a gap between phenolic and technological grape maturities [1]. As a result, the composition of grapes at harvest time and, consequently, that of wines are being affected, especially with regards to phenolic composition. Hence, wine quality is decreasing due to changes in the organoleptic properties, such as color and astringency, making necessary to implement new adaptive technologies in wineries to modulate these properties in order to improve wine quality.