GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Advancement of grape maturity – comparison between contrasting varieties and regions

Advancement of grape maturity – comparison between contrasting varieties and regions

Abstract

Context and purpose of the study – Grapevine phenology has advanced across many regions, nationally and internationally, in recent decades under the influence of increasing temperatures, resulting in earlier vintages (Jones and Davis, 2000, Petrie and Sadras, 2008, Tomasi et al., 2011, Webb et al., 2011. Earlier vintages have several ramifications for the wine industry. There are direct implications on quality, due to the fruit ripening during the hotter conditions of summer and early autumn, which then impacts grape composition and wine style (Sadras et al., 2013, Buttrose et al., 1971, Mira de Ordũna, 2010). There are also indirect implications where the fruit is perceived to ripen at a faster rate and the crop reach optimum maturity over a shorter period (Coulter et al., 2016). This can result in the grapes being harvested according to the winery processing schedule rather than when they are optimally ripe. This study aims to advance our understanding of the response of different varieties and regions to warming temperatures.

Materials and Methods – This research utilized an historical data set, covering 18 years, multiple varieties and four separate vineyard sites located in different climatic zones in Victoria, Australia. The data were analysed using mixed models to understand differences in the day of year maturity changes between varieties and vineyard sites.

Results – The data analysis suggested that the rate of advancement of day of maturity as a function of seasonal Growing Degree Days (September to March) varies significantly between varieties with some varieties being quite resistant to the temperature increases being experienced. There is some evidence that later ripening varieties are advancing their day of year maturity at a more rapid rate than earlier ripening varieties which helps to explain the vintage compression being observed in Australia. While yield had a significant association with the day of year maturity for some varieties, this was found to be an additional effect and not at the expense of the response to temperature indices. An understanding of how different varieties are responding to changing climates will assist in future planting decisions and determine how to best adapt to climate change. It will also demonstrate the degree of genetic variation available in modern grape varieties in response to changing vineyard climates, which varieties are the most resilient and how they may best be managed.

DOI:

Publication date: September 27, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Wendy CAMERON1, Sigfredo FUENTES1*, EWR BARLOW1, Kate HOWELL1 and Paul R. PETRIE2

1 University of Melbourne, Faculty of Veterinary and Agricultural Sciences, VIC 3010, Australia

2 South Australian Research and Development Institute, Waite Research Precinct, Urrbrae, SA 5064, Australia

Contact the author

Keywords

day of year maturity, growing degree day, spring index

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

The use of Hanseniaspora vineae on the production of base sparkling wine

Non-Saccharomyces yeasts have been associated, for many years, with challenging alcoholic fermentation processes. However, during the last decade the use of non-Saccharomyces yeasts in wine production has become increasingly widespread due to the advantages they can offer in mixed inoculations with Saccharomyces cerevisiae (Sc). In this respect, Hanseniaspora vineae (Hv), in synergy with Saccharomyces spp, represents an interesting opportunity to impart a positive contribution to the aroma complexity of wines. In fact, it is a well-known producer of pleasant esters, such as 2-phenylethyl acetate. This study compares the performances of Hv (strain Hv-205) in sequential inoculation modality to Sc in three Chardonnay musts for base sparkling wine production. No significant differences were observed in basic chemical parameters between wines except for titratable acidity, with a significantly decrease (up to 1.5 g/L) in Hv processes due to malic acid degradation. The analysis of the aroma compounds revealed remarkable differences in concentration of volatile metabolites, among others up to 37-fold increase of 2-phenylethyl acetate. In contrast, lower concentration of its alcohol were detected, suggesting higher acetylation activity by Hv.

Evolution and sensory contribution of ethyl acetate in sweet wines

Ethyl acetate (EtOAc) is the main ester present in all wines, generally produced by yeasts during alcoholic fermentation and sometimes by bacteria during barrel ageing. Its odor is characterized by solvent notes, which give wines their acescent note [1].

La zonazione della D.O.C. Bolgheri (Castagneto C.): aspetti metodologici ed applicativi

The results of the first step of the zoning study carried out in Bolghery appellation area (Castagneto Carducci, Tuscany) in the 1993-1995 period have been recently published. Quality factors of Bolgheri appellation and different “terroirs ” were identified.

Terroir factors causing sensory and chemical variation in Riesling wines

The term “terroir”, originated in France, comprises the interaction of soil, climate, and topography with the vines of a specific variety and may be extended to the human impact due to the active choice of viticultural and oenological treatments.

Above and below–research challenges for the future of winegrape production

Grapevines interact with the climate (aboveground) and the soil (belowground), affecting the characteristics of winegrapes produced. These interactions are impacted by climate change, the erosion of biodiversity, and losses of soil organic matter (SOM).