GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Advancement of grape maturity – comparison between contrasting varieties and regions

Advancement of grape maturity – comparison between contrasting varieties and regions

Abstract

Context and purpose of the study – Grapevine phenology has advanced across many regions, nationally and internationally, in recent decades under the influence of increasing temperatures, resulting in earlier vintages (Jones and Davis, 2000, Petrie and Sadras, 2008, Tomasi et al., 2011, Webb et al., 2011. Earlier vintages have several ramifications for the wine industry. There are direct implications on quality, due to the fruit ripening during the hotter conditions of summer and early autumn, which then impacts grape composition and wine style (Sadras et al., 2013, Buttrose et al., 1971, Mira de Ordũna, 2010). There are also indirect implications where the fruit is perceived to ripen at a faster rate and the crop reach optimum maturity over a shorter period (Coulter et al., 2016). This can result in the grapes being harvested according to the winery processing schedule rather than when they are optimally ripe. This study aims to advance our understanding of the response of different varieties and regions to warming temperatures.

Materials and Methods – This research utilized an historical data set, covering 18 years, multiple varieties and four separate vineyard sites located in different climatic zones in Victoria, Australia. The data were analysed using mixed models to understand differences in the day of year maturity changes between varieties and vineyard sites.

Results – The data analysis suggested that the rate of advancement of day of maturity as a function of seasonal Growing Degree Days (September to March) varies significantly between varieties with some varieties being quite resistant to the temperature increases being experienced. There is some evidence that later ripening varieties are advancing their day of year maturity at a more rapid rate than earlier ripening varieties which helps to explain the vintage compression being observed in Australia. While yield had a significant association with the day of year maturity for some varieties, this was found to be an additional effect and not at the expense of the response to temperature indices. An understanding of how different varieties are responding to changing climates will assist in future planting decisions and determine how to best adapt to climate change. It will also demonstrate the degree of genetic variation available in modern grape varieties in response to changing vineyard climates, which varieties are the most resilient and how they may best be managed.

DOI:

Publication date: September 27, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Wendy CAMERON1, Sigfredo FUENTES1*, EWR BARLOW1, Kate HOWELL1 and Paul R. PETRIE2

1 University of Melbourne, Faculty of Veterinary and Agricultural Sciences, VIC 3010, Australia

2 South Australian Research and Development Institute, Waite Research Precinct, Urrbrae, SA 5064, Australia

Contact the author

Keywords

day of year maturity, growing degree day, spring index

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Impact of climate variability and change on grape yield in Italy

Viticulture is entangled with weather and climate. Therefore, areas currently suitable for grape production can be challenged by climate change. Winegrowers in Italy already experiences the effect of climate change, especially in the form of warmer growing season, more frequent drought periods, and increased frequency of weather extremes.
The aim of this study is to investigate the impact of climate variability and change on grape yield in Italy to provide winegrowers the information needed to make their business more sustainable and resilient to climate change. We computed a specific range of bioclimatic indices, selected by the International Organisation of Vine and Wine (OIV), and correlated them to grape yield data. We have worked in collaboration with some wine consortiums in northern and central Italy, which provided grape yield data for our analysis.
Using climate variables from the E-OBS dataset we investigate how the bioclimatic indices changed in the past, and the impact of this change on grape productivity in the study areas. The climate impact on productivity is also investigated by using high-resolution convection-permitting models (CPMs – 2.2 horizontal resolution), with the purpose of estimating productivity in future emission scenarios. The CPMs are likely the best available option for this kind of impact studies since they allow a better representation of small-scale processes and features, explicitly resolve deep convection, and show an improved representation of extremes. In our study, we also compare CPMs with regional climate models (RCMs – 12 km horizontal resolution) to assess the added value of high-resolution models for impact studies. Further development of our study will lead to assessing the future suitability for vine cultivation and could lead to the construction of a statistical model for future projection of grape yield.

Effects of grapevine mycorrhizal association on fine root dynamics depend on rootstock genotype

Context and Purpose of the study. Arbuscular mycorrhizal fungi (AMF) symbiosis with grapevines is a key component of vineyard ecosystems.

Influence of Partial Rootzone Drying on grape and wine anthocyanin composition

The effect of Partial Rootzone Drying (PRD) on fruit and wine composition has been investigated. At harvest, total anthocyanin and phenolic concentration of Shiraz and Cabernet Sauvignon fruit was either unaltered or increased by PRD relative to control irrigation over two seasons. Where there was an increase in anthocyanin concentration

Evaluating South African Chenin blanc wine styles using an LC-MS screening method

Sorting Chenin blanc is one of the most important white wine cultivars in South Africa. It has received a lot of attention and accolades in the past years and more research than ever is dedicated to this versatile cultivar. According to the Chenin blanc association of South Africa, there are three recognized dry wine styles, Fresh and Fruity (FF), Rich and Ripe Unwooded
(RRU), and Rich and Ripe Wooded (RRW). They are traditionally established with the aid of expert sensory evaluation, but the cost and the (subjective) human factor are aspects to be taken into account. A more objective and possibly robust way of assessing and attributing these styles can be the use of chemical analysis.

Climat-roche-sol-fromage. Cartographie fonctionnelle du terroir. Exemple de l’A.O.C. Comté

La place prépondérante que prend le Massif Jurassien en Franche-Comté confère à la région un caractère montagneux qui a orienté l’agriculture vers l’élevage laitier. Cette vocation pastorale marquée et de rudes conditions climatiques sont à l’origine de la production, attestée depuis l’Antiquité, d’un fromage de réserve pour la longue période hivernale. Cette tradition fromagère, liée à des prairies naturelles, a perduré jusqu’à nos jours. La qualité et la spécificité du produit actuel, le fromage de Comté, ont été reconnues dès 1952 par l’attribution d’un label et dès 1958, par la reconnaissance d’un périmètre d’appellation d’origine contrôlée, l’A.O.C. Comté (fig. 1).