GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Monitoring vineyard canopy structure by aerial and ground-based RGB and multispectral imagery analysis

Monitoring vineyard canopy structure by aerial and ground-based RGB and multispectral imagery analysis

Abstract

Context and purpose of the study – Unmanned Aerial Vehicles (UAVs) are increasingly used to monitor canopy structure and vineyard performance. Compared with traditional remote sensing platforms (e.g. aircraft and satellite), UAVs offer a higher operational flexibility and can acquire ultra-high resolution images in formats such as true color red, green and blue (RGB) and multispectral. Using photogrammetry, 3D vineyard models and normalized difference vegetation index (NDVI) maps can be created from UAV images and used to study the structure and health of grapevine canopies. However, there is a lack of comparison between UAV-based images and ground-based measurements, such as leaf area index (LAI) and canopy porosity. Moreover, most vineyard 3D model studies provide limited details on how they can be used to guide vineyard management. This study evaluated the accuracy of UAV-based canopy measurements, including canopy volume and NDVI and compared them with ground-based canopy measures, such as LAI and canopy porosity.

Material and methods – Throughout the 2017-18 growing season, UAV flights were performed to collect RGB and multispectral images in the research vineyard at the Waite Campus, University of Adelaide, South Australia. Using these images, canopy volume and NDVI were calculated. Ground-based measurements for LAI and canopy porosity were also carried out for comparison.

Results – LAI measured from budburst to harvest showed a peak at around veraison, before starting to decline. Similar trends were also observed in canopy volume and NDVI. Using linear regression, canopy volume of Shiraz and Semillon blocks showed a strong positive correlation with LAI (R2 = 0.75 and 0.68, respectively). NDVI was also positively correlated with LAI (R2 = 0.75 and 0.45 for Shiraz and Semillon, respectively). Canopy volume extracted from UAV-based RGB imagery could be used to monitor canopy development during the growing season. However, canopy volume has limited capacity to inform on important canopy architecture properties such as leaf density, total leaf area and porosity, known to affect yield and fruit quality. The accuracy of NDVI was also found to be strongly affected by the presence of vegetation on the vineyard floor at early development stages.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Jingyun OUYANG1, Roberta DE BEI1, Bertram OSTENDORF2, Cassandra COLLINS1*

1 The University of Adelaide, School of Agriculture, Food and Wine, Waite Research Institute, PMB 1 Glen Osmond, 5064, South Australia. Australia
2 The University of Adelaide, School of Biological Sciences, Adelaide, 5000, South Australia. Australia

Contact the author

Keywords

remote sensing, unmanned aerial vehicle, leaf area index, canopy architecture, canopy volume, NDVI

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Zoning for drinking, tasting the territory place (“Great Zonation”): first considerations and methodology

Following the idea of « Grande Filiera » (GF) (Great chain), of « Grande Zonazione » (GZ) (Great Zonation), of “interpretation, estimation and valorisation of vineyards and wines landscape, of “qualities”(we have classified more than ninety), of quality economy.

DEVELOPMENT OF BIOPROSPECTING TOOLS FOR OENOLOGICAL APPLICATIONS

Wine production is a complex biochemical process that involves a heterogeneous microbiota consisting of different microorganisms such as yeasts, bacteria, and filamentous fungi. Among these microorganisms, yeasts play a predominant role in the chemistry of wine, as they actively participate in alcoholic fermentation, a biochemical process that transforms the sugars in grapes into ethanol and carbon dioxide while producing additional by-products. The quality of the final product is greatly influenced by the microbiota present in the grape berry, and the demand for indigenous yeast starters adapted to specific grape must and reflecting the biodiversity of a particular region is increasing. This supports the concept that indigenous yeast strains can be associated with a “terroir”.

Enhancing grape traceability from grower to consumer through GS1 Standards: A case study of the Australian table grape industry

The traceability of agricultural products, including grapes, is essential for ensuring food safety, quality control, and supply chain transparency. This paper investigates the implementation of GS1 standards in enhancing the traceability of grapes from grower to consumer.

Advances in the chemistry of rosé winemaking and ageing

The market share of Rosé wine in France has grown from 11 % to 32 % over the last 20 years. Current trends are towards rosé wines of a lighter shade of pink, and where possible, containing a greater concentration in varietal thiols. Grape varieties, the soil on which they are grown, viticultural practices and winemaking technology all impact the polyphenols, color and aromas of rosé wines.

Varieties and rootstocks: an important mean for adaptation to terroir

A large genetic diversity exists among V. vinifera varieties, but also among cultivated rootstocks. This diversity is important to adapt plant material to different environmental conditions