GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Monitoring vineyard canopy structure by aerial and ground-based RGB and multispectral imagery analysis

Monitoring vineyard canopy structure by aerial and ground-based RGB and multispectral imagery analysis

Abstract

Context and purpose of the study – Unmanned Aerial Vehicles (UAVs) are increasingly used to monitor canopy structure and vineyard performance. Compared with traditional remote sensing platforms (e.g. aircraft and satellite), UAVs offer a higher operational flexibility and can acquire ultra-high resolution images in formats such as true color red, green and blue (RGB) and multispectral. Using photogrammetry, 3D vineyard models and normalized difference vegetation index (NDVI) maps can be created from UAV images and used to study the structure and health of grapevine canopies. However, there is a lack of comparison between UAV-based images and ground-based measurements, such as leaf area index (LAI) and canopy porosity. Moreover, most vineyard 3D model studies provide limited details on how they can be used to guide vineyard management. This study evaluated the accuracy of UAV-based canopy measurements, including canopy volume and NDVI and compared them with ground-based canopy measures, such as LAI and canopy porosity.

Material and methods – Throughout the 2017-18 growing season, UAV flights were performed to collect RGB and multispectral images in the research vineyard at the Waite Campus, University of Adelaide, South Australia. Using these images, canopy volume and NDVI were calculated. Ground-based measurements for LAI and canopy porosity were also carried out for comparison.

Results – LAI measured from budburst to harvest showed a peak at around veraison, before starting to decline. Similar trends were also observed in canopy volume and NDVI. Using linear regression, canopy volume of Shiraz and Semillon blocks showed a strong positive correlation with LAI (R2 = 0.75 and 0.68, respectively). NDVI was also positively correlated with LAI (R2 = 0.75 and 0.45 for Shiraz and Semillon, respectively). Canopy volume extracted from UAV-based RGB imagery could be used to monitor canopy development during the growing season. However, canopy volume has limited capacity to inform on important canopy architecture properties such as leaf density, total leaf area and porosity, known to affect yield and fruit quality. The accuracy of NDVI was also found to be strongly affected by the presence of vegetation on the vineyard floor at early development stages.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Jingyun OUYANG1, Roberta DE BEI1, Bertram OSTENDORF2, Cassandra COLLINS1*

1 The University of Adelaide, School of Agriculture, Food and Wine, Waite Research Institute, PMB 1 Glen Osmond, 5064, South Australia. Australia
2 The University of Adelaide, School of Biological Sciences, Adelaide, 5000, South Australia. Australia

Contact the author

Keywords

remote sensing, unmanned aerial vehicle, leaf area index, canopy architecture, canopy volume, NDVI

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Characterization of vine vigor by ground based NDVI measurements

Many farming operations aim at controlling the leaf area of the vine according to its load. There are several techniques, direct and indirect, of estimate of this leaf area in a specific way, but impossible to implement at great scales. These last years, research in airborne and satellite remote sensing made it possible to show that a multispectral index of vegetation, computed from measurements of reflectances (red and near infrared), the « Normalised Difference Vegetation Index » (NDVI), is well correlated to the « Leaf Area Index » (leaf area per unit of ground) of the vine. Nevertheless these methods of acquisition and processing data are rather constraining and complex.

Tracing glycosidically-bound smoke taint markers from grape to wine

The increasing frequency of wildfires on the West Coast of the USA is seen as a significant risk for the grape and wine industry. Research has shown that perceived smoke impact in wines correlates with increases in volatile phenols (VPs) in grapes exposed to fresh smoke.

“Zonation”: interpretation and estimation of “Great zonation” (GZ) following the base methodology of “GRANDE FILIERA” (GF) (Great chain)

Dans des travaux précédents sur le zonage, on a traité de la « Grande Filière », du « terroir », du « territoire », de la «″Terra »″ (« Terre »”), des « Petits zonages ou sub-zonages », du « Grand Zonage », de la qualité (nous en avons classifié plus de quatre-vingt-dix), des « Grands Objectifs » (GO) de l’activité vitivinicole et des moyens utilisés pour les atteindre. Dans le « GRAND ZONAGE » (GZ) nous avons précisé que pour zoner, nous partons des aspects

Cartes thématiques: applications au vignoble champenois

Quel est l’intérêt des cartes en viticulture? Celles-ci répondent à plusieurs usages.
Formalisation au sein d’un référentiel codifié et normalisé de la connaissance relative au milieu, aux observations biologiques et aux pratiques culturales.

Unprecedented rainfall in northern Portugal

Aim: Climate is arguably one of the most important factors determining the quality of wine from any given grapevine variety. High rainfall during spring can promote growth of the vines but increases the risk of fungal disease, while vineyard operations can be disrupted, as machinery may be prevented from getting in the vineyard owing to muddy soils.