GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Monitoring vineyard canopy structure by aerial and ground-based RGB and multispectral imagery analysis

Monitoring vineyard canopy structure by aerial and ground-based RGB and multispectral imagery analysis

Abstract

Context and purpose of the study – Unmanned Aerial Vehicles (UAVs) are increasingly used to monitor canopy structure and vineyard performance. Compared with traditional remote sensing platforms (e.g. aircraft and satellite), UAVs offer a higher operational flexibility and can acquire ultra-high resolution images in formats such as true color red, green and blue (RGB) and multispectral. Using photogrammetry, 3D vineyard models and normalized difference vegetation index (NDVI) maps can be created from UAV images and used to study the structure and health of grapevine canopies. However, there is a lack of comparison between UAV-based images and ground-based measurements, such as leaf area index (LAI) and canopy porosity. Moreover, most vineyard 3D model studies provide limited details on how they can be used to guide vineyard management. This study evaluated the accuracy of UAV-based canopy measurements, including canopy volume and NDVI and compared them with ground-based canopy measures, such as LAI and canopy porosity.

Material and methods – Throughout the 2017-18 growing season, UAV flights were performed to collect RGB and multispectral images in the research vineyard at the Waite Campus, University of Adelaide, South Australia. Using these images, canopy volume and NDVI were calculated. Ground-based measurements for LAI and canopy porosity were also carried out for comparison.

Results – LAI measured from budburst to harvest showed a peak at around veraison, before starting to decline. Similar trends were also observed in canopy volume and NDVI. Using linear regression, canopy volume of Shiraz and Semillon blocks showed a strong positive correlation with LAI (R2 = 0.75 and 0.68, respectively). NDVI was also positively correlated with LAI (R2 = 0.75 and 0.45 for Shiraz and Semillon, respectively). Canopy volume extracted from UAV-based RGB imagery could be used to monitor canopy development during the growing season. However, canopy volume has limited capacity to inform on important canopy architecture properties such as leaf density, total leaf area and porosity, known to affect yield and fruit quality. The accuracy of NDVI was also found to be strongly affected by the presence of vegetation on the vineyard floor at early development stages.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Jingyun OUYANG1, Roberta DE BEI1, Bertram OSTENDORF2, Cassandra COLLINS1*

1 The University of Adelaide, School of Agriculture, Food and Wine, Waite Research Institute, PMB 1 Glen Osmond, 5064, South Australia. Australia
2 The University of Adelaide, School of Biological Sciences, Adelaide, 5000, South Australia. Australia

Contact the author

Keywords

remote sensing, unmanned aerial vehicle, leaf area index, canopy architecture, canopy volume, NDVI

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Distinguishing of red wines from Northwest China by colour-flavour related physico-chemical indexes

Aim: Northwest China occupies an important position in China’s wine regions due to its superior geographical conditions with dry climate and sufficient sunlight. In this work, we aimed to investigate the physico-chemical colour and flavour characteristics of red wine in Northwest China.

Impact of genotypic variability on grapevine architecture and light interception: A functional-structural modelling approach

Aerial architecture plays a key role in plant functioning as it affects light interception and microclimate. In grapevine, this architecture is primarily shaped by winter pruning and further adjusted through practices such as leaf thinning and topping during the growth cycle.

FLAVANOL COMPOSITION OF VARIETAL AND BLEND WINES MADE BEFORE AND AFTER FERMENTATION FROM SYRAH, MARSELAN AND TANNAT

Background: The Flavan-3-ol extraction from grape skin and seed during red-winemaking and their retention into wines depend on many factors, some of which are modified in the winemaking of blend wines. Recent research shows that Marselan, have grapes with high proportion of skins with high concentrations of flavanols, but produces red-wines with low proportion of skin derived flavanols, differently to the observed in Syrah or Tannat. But the factors explaining these differences are not yet understood.

Membrane contactor: a sustainable technology to remove dissolved oxygen from wine and preserve wine aroma

Oxygen management in wine is one of the most significant challenging issues for winemakers.

Impact of reduction alcohol techiniques in the aromatic chemical profile of rosé Tempranillo wines

Studying the impact of reducing alcohol techniques in the chemical composition of the aromatic profile of rosé Tempranillo wines from the spanish region of Castilla-La Mancha INTRODUCTION: In the last decades there has been an increseasing demand of wines with low or non-existing alcohol concentration due to the negative effects that alcohol has in health. In spite of that, there are not laws that protect these products, and there is also a great difficulty in the elaboration of these type of wines due to the increasing temperatures because of climate change. This is why the oenological industry has made great advances in the development of different techniques that could satisfy consumers’ demands without modifying wine quality. The most used techniques have been post-fermentative ones.