GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Monitoring vineyard canopy structure by aerial and ground-based RGB and multispectral imagery analysis

Monitoring vineyard canopy structure by aerial and ground-based RGB and multispectral imagery analysis

Abstract

Context and purpose of the study – Unmanned Aerial Vehicles (UAVs) are increasingly used to monitor canopy structure and vineyard performance. Compared with traditional remote sensing platforms (e.g. aircraft and satellite), UAVs offer a higher operational flexibility and can acquire ultra-high resolution images in formats such as true color red, green and blue (RGB) and multispectral. Using photogrammetry, 3D vineyard models and normalized difference vegetation index (NDVI) maps can be created from UAV images and used to study the structure and health of grapevine canopies. However, there is a lack of comparison between UAV-based images and ground-based measurements, such as leaf area index (LAI) and canopy porosity. Moreover, most vineyard 3D model studies provide limited details on how they can be used to guide vineyard management. This study evaluated the accuracy of UAV-based canopy measurements, including canopy volume and NDVI and compared them with ground-based canopy measures, such as LAI and canopy porosity.

Material and methods – Throughout the 2017-18 growing season, UAV flights were performed to collect RGB and multispectral images in the research vineyard at the Waite Campus, University of Adelaide, South Australia. Using these images, canopy volume and NDVI were calculated. Ground-based measurements for LAI and canopy porosity were also carried out for comparison.

Results – LAI measured from budburst to harvest showed a peak at around veraison, before starting to decline. Similar trends were also observed in canopy volume and NDVI. Using linear regression, canopy volume of Shiraz and Semillon blocks showed a strong positive correlation with LAI (R2 = 0.75 and 0.68, respectively). NDVI was also positively correlated with LAI (R2 = 0.75 and 0.45 for Shiraz and Semillon, respectively). Canopy volume extracted from UAV-based RGB imagery could be used to monitor canopy development during the growing season. However, canopy volume has limited capacity to inform on important canopy architecture properties such as leaf density, total leaf area and porosity, known to affect yield and fruit quality. The accuracy of NDVI was also found to be strongly affected by the presence of vegetation on the vineyard floor at early development stages.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Jingyun OUYANG1, Roberta DE BEI1, Bertram OSTENDORF2, Cassandra COLLINS1*

1 The University of Adelaide, School of Agriculture, Food and Wine, Waite Research Institute, PMB 1 Glen Osmond, 5064, South Australia. Australia
2 The University of Adelaide, School of Biological Sciences, Adelaide, 5000, South Australia. Australia

Contact the author

Keywords

remote sensing, unmanned aerial vehicle, leaf area index, canopy architecture, canopy volume, NDVI

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Chromatic characteristics of Nermantis and Termantis wines from traditional and withered grapes

The work aims to characterise the colour features of the wines of two new resistant varieties breeeded at the Edmund Mach Foundation (Italy) and recently inscribed in the Italian National Registriy of Vine Varieties.

Circular viticulture: transforming grapevine waste into sustainable fibers

Annually, around 31.95 million tonnes of grapevine prunings are produced worldwide as agricultural waste.

FUNCTIONALIZED MESOPOROUS SILICA IS A VIABLE ALTERNATIVE TO BENTONITE FOR WINE PROTEIN STABILIZATION

The presence of grape-derived heat unstable proteins can lead to haze formation in white wines [1], an instability prevented by removing these proteins by adding bentonite, a hydrated aluminum silicate that interacts electrostatically with wine proteins leading to their flocculation. Despite effective, using bentonite has several drawbacks as the costs associated with its use, the potential negative effects on wine quality, and its environmental impact, so that alternative solutions are needed.

Q-NMR measurements: quantitative analysis of wine composition applied to Bordeaux red wines authenticity control

Traceability of wine is today a consumer demand and a scientific challenge. The methods of analysis must be able to control three fundamental parameters: the geographical origin, the grape varieties, and the vintage.

Study of the oenological potential of varieties resistant to cryptogamic diseases and drought to anticipate varietal selection in Occitanie

In the context of climate change and the growing need to reduce the use of phytosanitary products, the exploration of disease-resistant grape varieties and/or adapted to drought conditions is becoming crucial for the wine industry in certain regions of France, such as Occitanie. Currently, exploring the oenological potential of varieties by analyzing their biochemical composition before and after winemaking comes rather late in the varietal selection process.