GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Assessing bunch architecture for grapevine yield forecasting by image analysis 

Assessing bunch architecture for grapevine yield forecasting by image analysis 

Abstract

Context and purpose of the study – It is fundamental for wineries to know the potential yield of their vineyards as soon as possible for future planning of winery logistics. As such, non-invasive image-based methods are being investigated for early yield prediction. Many of these techniques have limitations that make it difficult to implement for practical use commercially. The aim of this study was to assess whether yield can be estimated using images taken in-field with a smartphone at different phenological stages. The accuracy of the method for predicting bunch weight at different phenological stages was assessed for seven different varieties.

Material and methods – During the 2017-18 growing season in the Coombe Vineyard at the Waite Campus of the University of Adelaide seven different varieties were chosen for this study: Semillon, Grenache, Shiraz, Merlot, Sauvignon Blanc, Tempranillo and Cabernet Franc. After fruitset, 30 vines per variety were selected and two shoots were flagged on each vine. Images of bunches were taken five times from EL stage 30-31 to EL stage 37-38 using a smartphone. Bunch volumes were estimated from images. At harvest bunches were collected, weighed and imaged in the laboratory to compare with field images.

Results – This new approach using a smartphone to forecast the yield showed promising results. Accurate weight forecast models could be obtained by taking bunch images at veraison (R2 ranging from 0.71 to 0.84). As the bunch architecture of different varieties can vary further studies are required to improve the accuracy of this method. The tools used for this study are inexpensive, in common use, and do not need a high level of expertise to use them, furthermore, the labour required to obtain data, is not time-consuming.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Marco ZITO*1, Massimiliano COCCO2, Roberta DE BEI3, Cassandra COLLINS3

1 Istituto di Scienze della Vita, Scuola Superiore Sant’Anna, Pisa, Italy 56127
2 Dipartimento di Agraria, Università degli Studi di Sassari, Sassari, Italy 07100
3 School of Agriculture, Food and Wine, Waite Research Precinct, The University of Adelaide, PMB I, Glen Osmond, SA 5064, Australia

Contact the author

Keywords

bunch architecture, yield prediction, image analysis, non-destructive method

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

AOC Saint-Romain, Hautes-Côtes-de-Beaune, Burgundy: analysis of a “terroir”

The abbreviation AOC designates, since 1905 in France, wines which characteristics and reputation are due to a proper “terroir”. The delimitation of such “terroirs” consists in a technical and statutory procedure which has developed by steps.

Comparison of imputation methods in long and varied phenological series. Application to the Conegliano dataset, including observations from 1964 over 400 grape varieties

A large varietal collection including over 1700 varieties was maintained in Conegliano, ITA, since the 1950s. Phenological data on a subset of 400 grape varieties including wine grapes, table grapes, and raisins were acquired at bud break, flowering, veraison, and ripening since 1964. Despite the efforts in maintaining and acquiring data over such an extensive collection, the data set has varying degrees of missing cases depending on the variety and the year. This is ubiquitous in phenology datasets with significant size and length. In this work, we evaluated four state-of-the-art methods to estimate missing values in this phenological series: k-Nearest Neighbour (kNN), Multivariate Imputation by Chained Equations (mice), MissForest, and Bidirectional Recurrent Imputation for Time Series (BRITS). For each phenological stage, we evaluated the performance of the methods in two ways. 1) On the full dataset, we randomly hold-out 10% of the true values for use as a test set and repeated the process 1000 times (Monte Carlo cross-validation). 2) On a reduced and almost complete subset of varieties, we varied the percentage of missing values from 10% to 70% by random deletion. In all cases, we evaluated the performance on the original values using normalized root mean squared error. For the full dataset we also obtained performance statistics by variety and by year. MissForest provided average errors of 17% (3 days) at budbreak, 14% (4 days) at flowering, 14.5% (7 days) at veraison, and 17% (3 days) at maturity. We completed the imputations of the Conegliano dataset, one of the world’s most extensive and varied phenological time series and a steppingstone for future climate change studies in grapes. The dataset is now ready for further analysis, and a rigorous evaluation of imputation errors is included.

Making sense of a sense of place: precision viticulture approaches to the analysis of terroir at different scales

Agriculture, natural resource management and the production and sale of products such as wine are increasingly data-driven activities. Thus, the use of remote and proximal crop and soil sensors to aid management decisions is becoming commonplace and ‘Agtech’ is proliferating commercially; mapping, underpinned by geographical information systems and complex methods of spatial analysis, is widely used…

Influence of grapevine rootstock/scion combination on rhizosphere and root endophytic microbiomes

Soil is a reservoir of microorganisms playing important roles in biogeochemical cycles and interacting with plants whether in the rhizosphere or in the root endosphere. The composition of the microbial communities thus impacts the plant health. Rhizodeposits (such as sugar, organic and amino acids, secondary metabolites, dead root cells …) are released by the roots and influence the communities of rhizospheric microorganisms, acting as signaling compounds or carbon sources for microbes. The composition of root exudates varies depending on several factors including genotypes. As most of the cultivated grapevines worldwide are grafted plants, the aim of this study was to explore the influence of rootstock and scion genotypes on the microbial communities of the rhizosphere and the root endosphere. The work was conducted in the GreffAdapt plot (55 rootstocks x 5 scions), in which the 275 combinations have been planted into 3 blocks designed according to the soil resistivity. Samples of roots and rhizosphere of 10 scion x rootstock combinations were first collected in May among the blocks 2 and 3. The quantities of bacteria, fungi and archaea have been assessed in the rhizosphere by quantitative PCR, and by cultivable methods for bacteria and fungi. The communities of bacteria, fungi and arbuscular mycorrhizal fungi (AMF) was analyzed by Illumina sequencing of 16S rRNA gene, ITS and 28S rRNA gene, respectively. The level of mycorrhization was also evaluated using black ink coloration of newly formed roots harvested in October. The level of bacteria, fungi and archaea was dependent on rootstock and scion genotypes. A block effect was observed, suggesting that the soil characteristics strongly influenced the microorganisms from the rhizosphere and root endosphere. High-throughput sequencing of the different target genes showed different communities of bacteria, fungi and AMF associated with the scion x rootstock combinations. Finally, all the combinations were naturally mycorrhized. The root mycorrhization intensity was influenced by the rootstock genotype, but not by the scion one. Altogether, these results suggest that both rootstock and scion genotypes influence the rhizosphere and root endophytic microbiomes. It would be interesting to analyze the biochemical composition of the rhizodeposition of these genotypes for a better understanding of the processes involved in the modulation of these microbiomes. Moreover, crossing our data with the plant agronomic characteristics could provide insights into their roles on plant fitness.

Transition metals and light-dependent reactions: application of a response surface methodology approach

Light-induced reactions can be responsible for detrimental changes of white and rosé wines. This is associated to the photo-degradation of riboflavin (RF) and of methionine (Met) causing the appearance of light-struck taste (LST).