GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Assessing bunch architecture for grapevine yield forecasting by image analysis 

Assessing bunch architecture for grapevine yield forecasting by image analysis 

Abstract

Context and purpose of the study – It is fundamental for wineries to know the potential yield of their vineyards as soon as possible for future planning of winery logistics. As such, non-invasive image-based methods are being investigated for early yield prediction. Many of these techniques have limitations that make it difficult to implement for practical use commercially. The aim of this study was to assess whether yield can be estimated using images taken in-field with a smartphone at different phenological stages. The accuracy of the method for predicting bunch weight at different phenological stages was assessed for seven different varieties.

Material and methods – During the 2017-18 growing season in the Coombe Vineyard at the Waite Campus of the University of Adelaide seven different varieties were chosen for this study: Semillon, Grenache, Shiraz, Merlot, Sauvignon Blanc, Tempranillo and Cabernet Franc. After fruitset, 30 vines per variety were selected and two shoots were flagged on each vine. Images of bunches were taken five times from EL stage 30-31 to EL stage 37-38 using a smartphone. Bunch volumes were estimated from images. At harvest bunches were collected, weighed and imaged in the laboratory to compare with field images.

Results – This new approach using a smartphone to forecast the yield showed promising results. Accurate weight forecast models could be obtained by taking bunch images at veraison (R2 ranging from 0.71 to 0.84). As the bunch architecture of different varieties can vary further studies are required to improve the accuracy of this method. The tools used for this study are inexpensive, in common use, and do not need a high level of expertise to use them, furthermore, the labour required to obtain data, is not time-consuming.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Marco ZITO*1, Massimiliano COCCO2, Roberta DE BEI3, Cassandra COLLINS3

1 Istituto di Scienze della Vita, Scuola Superiore Sant’Anna, Pisa, Italy 56127
2 Dipartimento di Agraria, Università degli Studi di Sassari, Sassari, Italy 07100
3 School of Agriculture, Food and Wine, Waite Research Precinct, The University of Adelaide, PMB I, Glen Osmond, SA 5064, Australia

Contact the author

Keywords

bunch architecture, yield prediction, image analysis, non-destructive method

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Use of Fourier Transform Infrared Spectroscopy (FTIR) to rapidly verify the botanical authenticity of gum arabic

Gum arabic is composed of a polysaccharide rich in galactose and arabinose along with a small protein fraction [1, 2], which gives its stabilizing power with respect to the coloring substances or tartaric precipitation of bottled wine. It is a gummy exudation from Acacia trees; the products used in enology have two possible botanical origins, i.e. Acacia seyal and Acacia senegal, with different chemical-physical features and consequently different technological effects on wines. The aim of this work is to evaluate the feasibility of discrimination of commercial gums Arabic between their two different sources, on the basis of the absorption of the Fourier Transform Infrared (FT-IR) spectra of their aqueous solutions, in order to propose an extremely rapid and cost-saving method for quality control laboratories.

Modulating role of SO2 in white wine protein haze formation

Despite the extensive research performed during the last decades, the multifactorial mechanism responsible for the white wine protein haze formation is not fully characterized. Herein, a new model is proposed, which is based on the experimental identification of sulfur dioxide as a major modulating factor inducing wine protein haze upon heating. As opposed to other reducing agents, such as 2-mercaptoethanol, dithiothreitol and tris(2-carboxyethyl)phosphine hydrochloride (TCEP), the addition of SO2 to must/wine upon heating cleaves intraprotein disulfide bonds, hinders thiol-disulfide exchange during protein interactions and can lead to the formation of novel inter/intraprotein disulfide bonds. Those are eventually responsible for wine protein aggregation which follows a nucleation-growth kinetic model as shown by dynamic light scattering [1].

Analysis of voltammetric fingerprints of different white grape musts reveals genotype-related oxidation patterns

Must oxidation is a complex process involving multiple enzymatic transformations, including the oxidation of phenolics containing an ortho-diphenol function. The latter process has a primary influence on wine aroma characteristics and stability, due to the central role of ortho-diphenols in the non-enzymatic oxidative reactions taking place during winemaking and in finished wine. Although oxidation of must is traditionally avoided, in recent years its contribution to wine quality has been revisited, and in some cases improvements to wine aroma have been observed with the application of controlled must oxidation. Nowadays there is a great interest in the wine industry towards the identification of specific markers or patterns to characterize and classify the response of grape must to oxidation.

Synthesis of the contribution of the Giesco (group of international experts of vitivinicultural systems for cooperation) to the study of terroirs

Since 1998, the GiESCO (previously named GESCO: Groupe d’Etude des Systèmes de COnduite de la vigne) has provided the scientific community with relevant contributions to the study of terroirs. Here is a synthesis of the main terroir-related fields and the major ideas the GiESCO has developed: Basic Terroir Unit and climate, Vine Ecophysiology and microclimate – moderate drought, Vineyard heterogeneity and new technologies, Viticultural Terroir Unit and canopy management, Terroir – Territory and man.

Improvement of sparkling wines production by a zoning approach in Franciacorta (Lombardy, Italy)

Franciacorta is a viticultural area which extends in the hills to the South of Iseo lake in Lombardy. It is particularly famous for the production of sparkling wines obtained mostly from Chardonnay and Pinot blanc and noir grapes. The name of this territory is of medieval origin and appeared for the first time in 1277 as “Franzacurta”, from the Latin “franchae curtes”, i.e. “tax-free” monasteries. It was geographically delimited in 1429, when it was a territory of the Republic of Venezia.