GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Assessing bunch architecture for grapevine yield forecasting by image analysis 

Assessing bunch architecture for grapevine yield forecasting by image analysis 

Abstract

Context and purpose of the study – It is fundamental for wineries to know the potential yield of their vineyards as soon as possible for future planning of winery logistics. As such, non-invasive image-based methods are being investigated for early yield prediction. Many of these techniques have limitations that make it difficult to implement for practical use commercially. The aim of this study was to assess whether yield can be estimated using images taken in-field with a smartphone at different phenological stages. The accuracy of the method for predicting bunch weight at different phenological stages was assessed for seven different varieties.

Material and methods – During the 2017-18 growing season in the Coombe Vineyard at the Waite Campus of the University of Adelaide seven different varieties were chosen for this study: Semillon, Grenache, Shiraz, Merlot, Sauvignon Blanc, Tempranillo and Cabernet Franc. After fruitset, 30 vines per variety were selected and two shoots were flagged on each vine. Images of bunches were taken five times from EL stage 30-31 to EL stage 37-38 using a smartphone. Bunch volumes were estimated from images. At harvest bunches were collected, weighed and imaged in the laboratory to compare with field images.

Results – This new approach using a smartphone to forecast the yield showed promising results. Accurate weight forecast models could be obtained by taking bunch images at veraison (R2 ranging from 0.71 to 0.84). As the bunch architecture of different varieties can vary further studies are required to improve the accuracy of this method. The tools used for this study are inexpensive, in common use, and do not need a high level of expertise to use them, furthermore, the labour required to obtain data, is not time-consuming.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Marco ZITO*1, Massimiliano COCCO2, Roberta DE BEI3, Cassandra COLLINS3

1 Istituto di Scienze della Vita, Scuola Superiore Sant’Anna, Pisa, Italy 56127
2 Dipartimento di Agraria, Università degli Studi di Sassari, Sassari, Italy 07100
3 School of Agriculture, Food and Wine, Waite Research Precinct, The University of Adelaide, PMB I, Glen Osmond, SA 5064, Australia

Contact the author

Keywords

bunch architecture, yield prediction, image analysis, non-destructive method

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

VINIoT: Precision viticulture service for SMEs based on IoT sensors network

The main innovation in the VINIoT service is the joint use of two technologies that are currently used separately: vineyard monitoring using multispectral imaging and deployed terrain sensors. One part of the system is based on the development of artificial intelligence algorithms that are feed on the images of the multispectral camera and IoT sensors, high-level information on water stress, grape ripening status and the presence of diseases. In order to obtain algorithms to determine the state of ripening of the grapes and avoid losing information due to the diversity of the grape berries, it was decided to work along the first year 2020 at berry scale in the laboratory, during the second year at the cluster scale and on the last year at plot scale. Different varieties of white and red grapes were used; in the case of Galicia we worked with the white grape variety Treixadura and the red variety Mencía. During the 2020 and 2021 campaigns, multispectral images were taken in the visible and infrared range of: 1) sets of 100 grapes classifying them by means of densimetric baths, 2) individual bunches. The images taken with the laboratory analysis of the ripening stage were correlated. Technological maturity, pH, probable degree, malic acid content, tartaric acid content and parameters for assessing phenolic maturity, IPT, anthocyanin content were determined. It has been calculated for each single image the mean value of each spectral band (only taking into account the pixels of interest) and a correlation study of these values with laboratory data has been carried out. These studies are still provisional and it will be necessary to continue with them, jointly with the training of the machine learning algorithms. Processed data will allow to determine the sensitivity of the multispectral images and select bands of interest in maturation.

Microbial stabilization of wines using innovative coiled UV-C reactor process: impact on chemical and organoleptic proprieties

For several years, numerous studies aimed at limiting the use of SO2 in wines (thermal treatments, pulsed electric fields, microwaves …). Processes must be able to preserve the organoleptic qualities of wines with low energy consumption. In this context, ultraviolet radiations (UV-C), at 254 nm, are well known for their germicidal proprieties. In order to inactivate microorganisms in grape juice and wine without affecting the quality of the product, efficiency of UV-C treatment process should be optimized.

Circular viticulture: transforming grapevine waste into sustainable fibers

Annually, around 31.95 million tonnes of grapevine prunings are produced worldwide as agricultural waste.

Enological characters of thirty vines in four different zones of Tuscany

In the last few years the development of HPLC techniques together with multivariate statistical methods allowed to set methodics of large discriminant and classing efficacy in the study of wine-grapes.

Il Lambrusco reggiano e il territorio di pianura: un modello efficace

Il caso “Lambrusco” è emblematico di un buon connubio tra un gruppo di vitigni ed un territorio di pianura caratterizzato da suoli fertili e alluvionali, che determinano un elevato sviluppo