GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Evaluation of a biological foliar fertilization system, in the production, agronomic and quality characteristics of three wine grape varieties

Evaluation of a biological foliar fertilization system, in the production, agronomic and quality characteristics of three wine grape varieties

Abstract

Context and purpose of the study – Evaluation of the fertility management practices in wine grape varieties production. Wine grape represents one of the most important productions in Greece with major impact to the socioeconomic characteristics of the country. The objective of this study is to evaluate, with the support of Geospatial Technologies, the potential effects of an innovative foliar fertilizer system, which is composed of three parts: a mineral fertilizer in a micronized formulation, a biostimulant as an enhancing factor of the process and, an amino acid compound (SANOVITA concept). The study was established at a collaborative, private vineyard, in the area of Trilofos-Thessaloniki, at the region of Northern Greece. The overall process will enhance the existing, cultivating practices of the vineyard, developing qualitative characteristics of the final product in order to establish a strong brand name called “Petit Oineonas”. The spraying was chosen to be made in only three French varieties (Merlot, Cabernet Sauvignon and Syrah), mainly because of an equal area size.

Material and methods – The vineyard was established at the location of Trilofos, Thessaloniki, Greece in fifteen lines in an area of almost 0.4 ha (4 stremmata). Half of the vineyard is sprayed with the system at two growth stages, while the grower applies organic management to the vineyard. The experimental design includes for each line of the fifteen corridors the following approaches: 1st part-a Control part with no application, 2nd part-an application of the SANOVITA concept (applied foliar in two growth stages during the growing season), 3rd part-a second Control part with no application and 4th part- an application of the SANOVITA concept. Data measured included NDVI, GIS (Geographic Information Systems) applications, use of Sentinel-2 satellite images, fruit size, sugar content and visible observations were recorded.

Results – Results from this year, have shown that the additional application of the foliar system based on GIS applications and spatial statistics has increased the yield and improved the overall quality of the grapes (weight, grape size and resulted in changes in sugar content). The study will be continued for additional 3 years for establishing further spatiotemporal comparison achievements.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Konstantinos ZOUKIDIS1, Athanasios GERTSIS1, Avraam MAVRIDIS1*Ourania-Elodie SOUFLEROU2, Evangelos SOUFLEROS3

Perrotis College, American Farm School, GR570 01, Thessaloniki, GREECE
Vineyard & Winery, “Christiane Jardel Soufleros”Trilofos GR575 00, Thessaloniki, GREECE
3 Laboratory of Oenology and Alcoholic Beverages, Department of Food Science &Technology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki, GREECE

Contact the author

Keywords

vineyard, GIS (Geographic Information Systems), Merlot, Cabernet Sauvignon, Syrah, SANOVITA concept

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

MICROFLUIDIC PLATFORM FOR SORTING YEAST CELLS ACCORDING TO THEIR MORPHOLOGY

In this work we briefly present a microfluidic device aiming to sort yeast cells according to their morphology. The technology is based upon microfluidic chips made out of Polydimethylsiloxane and glass using soft lithography processes and replica molding. The microfluidic device was used for encapsulating single yeast cells in liquid droplets containing growth medium. Liquid droplet containing yeast cells were sorted using a real time imaging and decision-making process.

Mousy off-flavor detection: a rapid LCMS/MS method

These days, consumers are interested in food products linked to the environment and the concept of naturalness. They prefer “free” products, such as those with no pesticide residues or no added sulfur dioxide (so2) in wines. In fact, so2 is the most widely used preservative in winemaking, as it has multiple properties at low cost: it is antioxidant, antioxidasic and antimicrobial.

Eugenol:  a new marker of hybrid vines? The case study of Baco Blanc in Armagnac

Nowadays, winemaking is dealing with great challenges, notably climate change, disease resistance and low pesticide inputs, desire for more sustainable agricultural productions and permanent changing of consumer preference. Trying to propose practice improvements, scientists are exploring vine hybridization a paradoxically old but still actual way to take up such challenges

Vineyard soil mapping to optimise wine quality: from ‘terroir’ characterisation to vineyard management

In this study, a soil mapping methodology at subplot level (scale 1:5000) for vineyard soils was developed. The aim of this mapping method was to establish mapping units, which could be used as basic units for ‘terroir’ characterisation and vineyard management (precision viticulture).

NEW INSIGHTS INTO VOLATILE SULPHUR COMPOUNDS SCALPING ON MICROAGGLOMERATED WINE CLOSURES

The evolution of wine during bottle ageing has been of great interest to ensure consistent quality over time. While the role of wine closures on the amount of oxygen is well-known [1], closures could also play other roles such as the scalping phenomenon of flavour compounds. Flavour scalping has been described as the sorption of flavour compounds by the packaging material, which could result in losses of flavour intensity. It has been reported in the literature that volatile sulphur compounds (VSC) can be scalped on wine closures depending on the type of closure (traditional and agglomerated cork, screw-cap, synthetic [2]).