GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Evaluation of a biological foliar fertilization system, in the production, agronomic and quality characteristics of three wine grape varieties

Evaluation of a biological foliar fertilization system, in the production, agronomic and quality characteristics of three wine grape varieties

Abstract

Context and purpose of the study – Evaluation of the fertility management practices in wine grape varieties production. Wine grape represents one of the most important productions in Greece with major impact to the socioeconomic characteristics of the country. The objective of this study is to evaluate, with the support of Geospatial Technologies, the potential effects of an innovative foliar fertilizer system, which is composed of three parts: a mineral fertilizer in a micronized formulation, a biostimulant as an enhancing factor of the process and, an amino acid compound (SANOVITA concept). The study was established at a collaborative, private vineyard, in the area of Trilofos-Thessaloniki, at the region of Northern Greece. The overall process will enhance the existing, cultivating practices of the vineyard, developing qualitative characteristics of the final product in order to establish a strong brand name called “Petit Oineonas”. The spraying was chosen to be made in only three French varieties (Merlot, Cabernet Sauvignon and Syrah), mainly because of an equal area size.

Material and methods – The vineyard was established at the location of Trilofos, Thessaloniki, Greece in fifteen lines in an area of almost 0.4 ha (4 stremmata). Half of the vineyard is sprayed with the system at two growth stages, while the grower applies organic management to the vineyard. The experimental design includes for each line of the fifteen corridors the following approaches: 1st part-a Control part with no application, 2nd part-an application of the SANOVITA concept (applied foliar in two growth stages during the growing season), 3rd part-a second Control part with no application and 4th part- an application of the SANOVITA concept. Data measured included NDVI, GIS (Geographic Information Systems) applications, use of Sentinel-2 satellite images, fruit size, sugar content and visible observations were recorded.

Results – Results from this year, have shown that the additional application of the foliar system based on GIS applications and spatial statistics has increased the yield and improved the overall quality of the grapes (weight, grape size and resulted in changes in sugar content). The study will be continued for additional 3 years for establishing further spatiotemporal comparison achievements.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Konstantinos ZOUKIDIS1, Athanasios GERTSIS1, Avraam MAVRIDIS1*Ourania-Elodie SOUFLEROU2, Evangelos SOUFLEROS3

Perrotis College, American Farm School, GR570 01, Thessaloniki, GREECE
Vineyard & Winery, “Christiane Jardel Soufleros”Trilofos GR575 00, Thessaloniki, GREECE
3 Laboratory of Oenology and Alcoholic Beverages, Department of Food Science &Technology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki, GREECE

Contact the author

Keywords

vineyard, GIS (Geographic Information Systems), Merlot, Cabernet Sauvignon, Syrah, SANOVITA concept

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Identifying physiological and genetic bases of grapevine adaptation to climate change with maintained quality: Genome diversity as a driver for phenotypic plasticity  (‘PlastiVigne’ project)

In the face of climate change, new grapevine varieties will have to show an adaptive phenotypic plasticity to maintain production with erratic water resources, and still ensure the quality of the final product. Their selection requires a better knowledge of the genetic basis of those traits and of the elementary processes involved in their variability. ‘PlastiVigne’, an emblematic project of the Vinid’Occ key challenge, funded by the Occitanie Region (France), tackles this issue with innovative genomic and physiological tools implemented on a unique panel of grape genetic resources representing the genetic diversity of Vitis vinifera. A graph-pangenome is developed from a representative set of high-quality genomes to study the extent and impact of structural genome variations and chromosomal rearrangements in the rapid adaptation capacity of grapevine.

Feminin vs masculin: the sensorial opposition between chambolle-musigny and gevrey-chambertin wines and the socioeconomical construction of a terroir/taste wine paradigm

At least since de XIXth century, wine writers oppose quite often the wines from Gevrey-Chambertin to the wines from Chambolle-Musigny claiming that the former are more “masculine” (full-bodied, powerful tannins, leathery, rustic…) and the later more “feminine” (delicate, elegant, silky, flowery…).

Grapevine xylem embolism resistance spectrum reveals which varieties have a lower mortality risk in a future dry climate

Wine growing regions have recently faced intense and frequent droughts that have led to substantial economical losses, and the maintenance of grapevine productivity under warmer and drier climate will rely notably on planting drought-resistant cultivars. Given that plant growth and yield depend on water transport efficiency and maintenance of photosynthesis, thus on the preservation of the vascular system integrity during drought, a better understanding of drought-related hydraulic traits that have a significant impact on physiological processes is urgently needed. We have worked towards this end by assessing vulnerability to xylem embolism in 30 grapevine commercial varieties encompassing red and white Vitis vinifera varieties, hybrid varieties characterized by a polygenic resistance for powdery and downy mildew, and commonly used rootstocks. These analyses further allowed a global assessment of wine regions with respect to their varietal diversity and resulting vulnerability to stem embolism. Hybrid cultivars displayed the highest vulnerability to embolism, while rootstocks showed the greatest resistance. Significant variability also arose among Vitis vinifera varieties, with Ψ12 and Ψ50 values ranging from -0.4 to -2.7 MPa and from -1.8 to -3.4 MPa, respectively. Cabernet franc, Chardonnay and Ugni blanc featured among the most vulnerable varieties while Pinot noir, Merlot and Cabernet Sauvignon ranked among the most resistant. In consequence, wine regions bearing a significant proportion of vulnerable varieties, such as Poitou-Charentes, France and Marlborough, New Zealand, turned out to be at greater risk under drought. These results highlight that grapevine varieties may not respond equally to warmer and drier conditions, outlining the importance to consider hydraulic traits associated with plant drought tolerance into breeding programmes and modeling simulations of grapevine yield maintenance under severe drought. They finally represent a step forward to advise the wine industry about which varieties and regions would have the lowest risk of drought-induced mortality under climate change.

Observation and modeling of climate at fine scales in wine-producing areas

Global change in climate affect regional climates and hold implications for viticulture worldwide. Despite numerous studies on the impact of projected global warming on different regions