GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Diversity in grape composition for sugars and acidity opens options to mitigate the effect of warming during ripening

Diversity in grape composition for sugars and acidity opens options to mitigate the effect of warming during ripening

Abstract

Context and purpose of the study – The marked climate change impact on vine and grape development (phenology, sugar content, acidity …) is one of the manifestations of Genotype X Environment X Management interactions importance in viticulture. Some practices, such as irrigation, can mitigate the effect of water deficit on grape development, but warming is much more difficult to challenge. High temperatures tend to alter the acid balance of the fruit with a parallel increase in sugar concentration. In the long term, genetic improvement to select varieties better coping with temperature elevation appear as a good option to support sustainable viticulture. Nevertheless, the existing phenotypic diversity for grape quality components that are influenced by temperature is poorly understood, which jeopardizes breeding strategies. The purpose of this study was to characterize the phenotypic diversity present in the genetic resources of Vitis vinifera or that could be implemented by breeding.

Material and methods – Two critical grape development stages were characterized comparing 33 genotypes, including 12 wine grape varieties and 21 microvine lines. Berry softening and growth were precisely monitored to target the onset of ripening and physiological ripening. Main primary metabolites and cations were analysed in order to assess the genotypic differences in fruit sugars/organic balance and titratable acidity.

Results – The phenotypic diversity observed in this study was higher than initially expected. In the mature stage, the weight of the berries varied from 1.04 to 5.25 g and the sugar concentration from 751 to 1353 mmol.L-1. The organic acid composition varied both in concentration (from 80 to 250 meq.L-1) and in composition with a malate / tartrate ratio of between 0.13 to 3.62. A correlation between this ratio and the weight of berries was found. Moreover, a great diversity of cation content has been observed. The potassium content, which is the major cation in the grape, varied between 28 and 57 mmol.L-1 at physiological maturity. This combined with variations in organic acid contents, led to a range of titration acidity from 38 to 215 meq.L-1. This experiment showed that the phenotypic diversity already present in V. vinifera varieties or to be obtained by crossing opens up new perspectives for mitigating the effects of climate change on the composition of berries, notably the rise in temperature.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Antoine BIGARD1,2, Charles ROMIEU1, Dargie T. BERHE2,3, Yannick SIRE2, Cécile MARCHAL4, Sandrine DEDET4, Hernán OJEDA2,4 et Laurent TORREGROSA1,2*

AGAP, Montpellier University, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
UE of Pech Rouge, Montpellier University, INRA, Gruissan, France
Dilla University, SNNPRS, Dilla, Ethiopie
GBRC of Vassal, University of Montpellier, INRA, Montpellier SupAgro, Marseillan, France

Contact the author

Keywords

grapevine, climate changes, warming, breeding, grape composition, sugar/acidity balance

Tags

Citation

Related articles…

Recognition of terroir in american viticultural areas

Un’ Area di Viticultura Americana, detta AVA, è una regione vinicola delimitata ed è dis­tinguibile da caratteristiche geografiche i cui confini sono stati definiti da regolamenti. Il sistema AVA rappresenta un ‘accettazione del concetto di terroir (terreno), come dimostra­no gli studi che confermano il carattere regionale dei vini AVA e dalla sviluppo di sub­denominazioni più relazionate al terreno.

IMPACT OF RHIZOPUS AND BOTRYTIS ON WINE FOAMING PROPERTIES

A lot of work has been done on the impact of Botrytis on the foam of sparkling wines. This work often concerns wines produced in cool regions, where Botrytis is the dominant fungal pathogen. However, in southern countries such as Spain, in particularly hot years such as 2022, the majority fungal pathogen is sometimes Rhizopus. Like Botrytis, Rhizopus is a fungus that produces an aspartic protease.

The effects of perennial cover crop management on soil temperature and vine water status

The implications of perennial cover crop management on vine vigor and yield have been well documented. However, whereas multiple studies show that cover crop management affects grapevine dry matter production, water, and nutrient status, the specific effects of a new hybrid perennial cover crop on soil temperature and its relationship to vine water status in vineyards has not been explored. This study will compare 3 different perennial cover crop combinations and tillage practices with a no-till seeding of a new hybrid perennial, Poa bulbosa (Pb).

Comparison of the skin resistance of several grape varieties in relation to their physico-chemical properties

The purpose of this study is to compare the skin resistance (SR) of the grapes with physico-chemical propertiess using a stong dataset and multidimentional statistical analysis .
A recent study has shown the role skin resistance plays against pest invasion but skin resistance could be a useful agronomic parameter, for example in the choice of the type of winemaking, by influencing the quantity of juice during crushing and maceration.

Sugar accumulation disorder Berry Shrivel – from current knowledge towards novel hypothesis

In contrast to fruit and grape berry ripening, the biological processes causing ripening disorders are often much less understood, although shriveling disorders of fruits are manifold and contribute to yield losses and reduced fruit quality worldwide. Shrinking berries are a common feature for all shriveling disorders in grapevine although their timing of appearance during the berry ripening process and their underlying induction processes distinct them from each other. The sugar accumulation disorder Berry Shrivel (BS) is characterized by a suppression of sugar accumulation short after veraison resulting in berries low in sugar content and anthocyanins in berry skins, while the organic acid content is similar. Recent studies analyzed the biochemical, morphological and molecular processes affected in BS berries and linked early changes to the period of ripening onset [1,2].