GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Diversity in grape composition for sugars and acidity opens options to mitigate the effect of warming during ripening

Diversity in grape composition for sugars and acidity opens options to mitigate the effect of warming during ripening

Abstract

Context and purpose of the study – The marked climate change impact on vine and grape development (phenology, sugar content, acidity …) is one of the manifestations of Genotype X Environment X Management interactions importance in viticulture. Some practices, such as irrigation, can mitigate the effect of water deficit on grape development, but warming is much more difficult to challenge. High temperatures tend to alter the acid balance of the fruit with a parallel increase in sugar concentration. In the long term, genetic improvement to select varieties better coping with temperature elevation appear as a good option to support sustainable viticulture. Nevertheless, the existing phenotypic diversity for grape quality components that are influenced by temperature is poorly understood, which jeopardizes breeding strategies. The purpose of this study was to characterize the phenotypic diversity present in the genetic resources of Vitis vinifera or that could be implemented by breeding.

Material and methods – Two critical grape development stages were characterized comparing 33 genotypes, including 12 wine grape varieties and 21 microvine lines. Berry softening and growth were precisely monitored to target the onset of ripening and physiological ripening. Main primary metabolites and cations were analysed in order to assess the genotypic differences in fruit sugars/organic balance and titratable acidity.

Results – The phenotypic diversity observed in this study was higher than initially expected. In the mature stage, the weight of the berries varied from 1.04 to 5.25 g and the sugar concentration from 751 to 1353 mmol.L-1. The organic acid composition varied both in concentration (from 80 to 250 meq.L-1) and in composition with a malate / tartrate ratio of between 0.13 to 3.62. A correlation between this ratio and the weight of berries was found. Moreover, a great diversity of cation content has been observed. The potassium content, which is the major cation in the grape, varied between 28 and 57 mmol.L-1 at physiological maturity. This combined with variations in organic acid contents, led to a range of titration acidity from 38 to 215 meq.L-1. This experiment showed that the phenotypic diversity already present in V. vinifera varieties or to be obtained by crossing opens up new perspectives for mitigating the effects of climate change on the composition of berries, notably the rise in temperature.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Antoine BIGARD1,2, Charles ROMIEU1, Dargie T. BERHE2,3, Yannick SIRE2, Cécile MARCHAL4, Sandrine DEDET4, Hernán OJEDA2,4 et Laurent TORREGROSA1,2*

AGAP, Montpellier University, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
UE of Pech Rouge, Montpellier University, INRA, Gruissan, France
Dilla University, SNNPRS, Dilla, Ethiopie
GBRC of Vassal, University of Montpellier, INRA, Montpellier SupAgro, Marseillan, France

Contact the author

Keywords

grapevine, climate changes, warming, breeding, grape composition, sugar/acidity balance

Tags

Citation

Related articles…

Polyphenol content of cork granulates at different steps of the manufacturing process of microagglomerated stoppers treated with supercritical CO2 used for wine bottling

The wine closure industry is mainly divided into three categories: screw caps, synthetic closures, and cork-based closures. Among this latter, microagglomerated cork stoppers treated with supercritical CO2 are now widely used, especially to avoid cork taint contaminations[1]. They are designed with cork granules obtained from cork offcuts of the punching process during the natural cork stoppers production. A previous study[2] showed that these stoppers released fewer polyphenols in 12 % (v/v) hydroalcoholic solution than natural cork stoppers.

Organic mulches slightly influence wine phenolic composition and sensorial properties

Grapevines have traditionally been grown in semi-arid areas, but viticulture is now compromised by climate change. Therefore, it is necessary to implement environmentally friendly viticulture practices to adapt grapevines to current climatic conditions. In this context, organic mulches offer many benefits, such as reduced soil erosion and increased organic matter, soil water content and crop productivity. However, these practices must not compromise grape and wine quality. Therefore, the objective of this study was to evaluate the effect on wine physicochemical and phenolic composition and sensorial properties of different soil management practices on the vine row. Over four years, five soil treatments were examined in two different vineyards.

Applying artificial intelligence for improving grape yield estimation: A case study of wine and table grapes in South Africa

Accurate grape yield estimation is essential for effective vineyard management, crop planning, and resource allocation. Traditional methods often involve time-consuming and labour-intensive processes, which may introduce errors due to the large size and inherent spatial variability of the vineyard blocks.

New Insights into Wine Color Analysis: A Comparison of Analytical Methods and their Correlation with Sensory Perception

wo spectrophotometric methods are recommended by the Organisation Internationale de la vigne et du vin (OIV). The first is the method after Glories, were the absorbances at 420 nm, 520 nm and 620 nm are measured (OIV 2006a).

Microclimatic differences in fruit zone of vineyards on different elevations of ‘nagy-eged hill’ in eger wine region, Hungary

The Bull’s Blood of Eger (‘Egri Bikavér’) is one of the most reputed red wines in Hungary and abroad, produced in the Northeastern part of the country.