GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Diversity in grape composition for sugars and acidity opens options to mitigate the effect of warming during ripening

Diversity in grape composition for sugars and acidity opens options to mitigate the effect of warming during ripening

Abstract

Context and purpose of the study – The marked climate change impact on vine and grape development (phenology, sugar content, acidity …) is one of the manifestations of Genotype X Environment X Management interactions importance in viticulture. Some practices, such as irrigation, can mitigate the effect of water deficit on grape development, but warming is much more difficult to challenge. High temperatures tend to alter the acid balance of the fruit with a parallel increase in sugar concentration. In the long term, genetic improvement to select varieties better coping with temperature elevation appear as a good option to support sustainable viticulture. Nevertheless, the existing phenotypic diversity for grape quality components that are influenced by temperature is poorly understood, which jeopardizes breeding strategies. The purpose of this study was to characterize the phenotypic diversity present in the genetic resources of Vitis vinifera or that could be implemented by breeding.

Material and methods – Two critical grape development stages were characterized comparing 33 genotypes, including 12 wine grape varieties and 21 microvine lines. Berry softening and growth were precisely monitored to target the onset of ripening and physiological ripening. Main primary metabolites and cations were analysed in order to assess the genotypic differences in fruit sugars/organic balance and titratable acidity.

Results – The phenotypic diversity observed in this study was higher than initially expected. In the mature stage, the weight of the berries varied from 1.04 to 5.25 g and the sugar concentration from 751 to 1353 mmol.L-1. The organic acid composition varied both in concentration (from 80 to 250 meq.L-1) and in composition with a malate / tartrate ratio of between 0.13 to 3.62. A correlation between this ratio and the weight of berries was found. Moreover, a great diversity of cation content has been observed. The potassium content, which is the major cation in the grape, varied between 28 and 57 mmol.L-1 at physiological maturity. This combined with variations in organic acid contents, led to a range of titration acidity from 38 to 215 meq.L-1. This experiment showed that the phenotypic diversity already present in V. vinifera varieties or to be obtained by crossing opens up new perspectives for mitigating the effects of climate change on the composition of berries, notably the rise in temperature.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Antoine BIGARD1,2, Charles ROMIEU1, Dargie T. BERHE2,3, Yannick SIRE2, Cécile MARCHAL4, Sandrine DEDET4, Hernán OJEDA2,4 et Laurent TORREGROSA1,2*

AGAP, Montpellier University, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
UE of Pech Rouge, Montpellier University, INRA, Gruissan, France
Dilla University, SNNPRS, Dilla, Ethiopie
GBRC of Vassal, University of Montpellier, INRA, Montpellier SupAgro, Marseillan, France

Contact the author

Keywords

grapevine, climate changes, warming, breeding, grape composition, sugar/acidity balance

Tags

Citation

Related articles…

A deep learning object detection approach for smart pest identification in vineyards

Flavescence dorée (FD) poses a significant threat to grapevine health, with the American grapevine leafhopper, Scaphoideus titanus, serving as the primary vector.

WINE RACKING IN THE WINERY AND THE USE OF INERT GASES: CONTROL AND OPTIMIZATION OF THE PROCESS

Atmospheric oxygen (O₂) generates oxidation in wines that affect their physicochemical and sensory evolution. The O₂ uptake in the different winemaking processes is generally considered to be negative for the sensory characteristics of white and rosé wines. Wine racking is a critical point of O₂ uptake, as the large surface area of the wine exposed during this operation and the inability to maintain an effective inert gas blanket over it.
The aim was to study the uptake of O₂ during the racking of a model wine as a reference and to compare with purging the destination tank with different inert gases.

The influence of RNAi-expressing rootstocks in controlling grey mold on grapevine cultivars

Worldwide, with an average of 6.7 million cultivated hectares, of which exclusively 51% in Europe (faostat, 2021), the production of table and wine grapes is a leading sector, with continued growth in Europe in the area devoted to vine cultivation. during the growing season, most of the plant organs can be susceptible to several fungal and oomycete diseases, leading to important economic losses and causing detrimental effects on fruit quality. the increasingly scarce availability of fungicidal products, often also related to their relative impact on the environment, coupled with the emergence of resistance in the pathogen to these products, make defence increasingly challenging.

Use of Fourier Transform Infrared Spectroscopy (FTIR) to rapidly verify the botanical authenticity of gum arabic

Gum arabic is composed of a polysaccharide rich in galactose and arabinose along with a small protein fraction [1, 2], which gives its stabilizing power with respect to the coloring substances or tartaric precipitation of bottled wine. It is a gummy exudation from Acacia trees; the products used in enology have two possible botanical origins, i.e. Acacia seyal and Acacia senegal, with different chemical-physical features and consequently different technological effects on wines. The aim of this work is to evaluate the feasibility of discrimination of commercial gums Arabic between their two different sources, on the basis of the absorption of the Fourier Transform Infrared (FT-IR) spectra of their aqueous solutions, in order to propose an extremely rapid and cost-saving method for quality control laboratories.

La hiérarchisation des Coteaux du Languedoc: une application concrète du zonage vitivinicole

L’A.O.C. Coteaux du Languedoc est située dans le Sud de la France, dans la partie Ouest de la bordure méditerranéenne. Elle forme un vaste amphithéâtre largement ouvert sur la mer méditerranée. L’Appellation a été constituée en 1960 par le regroupement de 14 anciennes petites appellations d’origine représentant 55 communes éparpillées dans les départements de l’Aude, de l’Hérault et du Gard. Par la suite, plusieurs extensions successives ont conduit à un ensemble actuellement composé de 168 communes.