GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Diversity in grape composition for sugars and acidity opens options to mitigate the effect of warming during ripening

Diversity in grape composition for sugars and acidity opens options to mitigate the effect of warming during ripening

Abstract

Context and purpose of the study – The marked climate change impact on vine and grape development (phenology, sugar content, acidity …) is one of the manifestations of Genotype X Environment X Management interactions importance in viticulture. Some practices, such as irrigation, can mitigate the effect of water deficit on grape development, but warming is much more difficult to challenge. High temperatures tend to alter the acid balance of the fruit with a parallel increase in sugar concentration. In the long term, genetic improvement to select varieties better coping with temperature elevation appear as a good option to support sustainable viticulture. Nevertheless, the existing phenotypic diversity for grape quality components that are influenced by temperature is poorly understood, which jeopardizes breeding strategies. The purpose of this study was to characterize the phenotypic diversity present in the genetic resources of Vitis vinifera or that could be implemented by breeding.

Material and methods – Two critical grape development stages were characterized comparing 33 genotypes, including 12 wine grape varieties and 21 microvine lines. Berry softening and growth were precisely monitored to target the onset of ripening and physiological ripening. Main primary metabolites and cations were analysed in order to assess the genotypic differences in fruit sugars/organic balance and titratable acidity.

Results – The phenotypic diversity observed in this study was higher than initially expected. In the mature stage, the weight of the berries varied from 1.04 to 5.25 g and the sugar concentration from 751 to 1353 mmol.L-1. The organic acid composition varied both in concentration (from 80 to 250 meq.L-1) and in composition with a malate / tartrate ratio of between 0.13 to 3.62. A correlation between this ratio and the weight of berries was found. Moreover, a great diversity of cation content has been observed. The potassium content, which is the major cation in the grape, varied between 28 and 57 mmol.L-1 at physiological maturity. This combined with variations in organic acid contents, led to a range of titration acidity from 38 to 215 meq.L-1. This experiment showed that the phenotypic diversity already present in V. vinifera varieties or to be obtained by crossing opens up new perspectives for mitigating the effects of climate change on the composition of berries, notably the rise in temperature.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Antoine BIGARD1,2, Charles ROMIEU1, Dargie T. BERHE2,3, Yannick SIRE2, Cécile MARCHAL4, Sandrine DEDET4, Hernán OJEDA2,4 et Laurent TORREGROSA1,2*

AGAP, Montpellier University, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
UE of Pech Rouge, Montpellier University, INRA, Gruissan, France
Dilla University, SNNPRS, Dilla, Ethiopie
GBRC of Vassal, University of Montpellier, INRA, Montpellier SupAgro, Marseillan, France

Contact the author

Keywords

grapevine, climate changes, warming, breeding, grape composition, sugar/acidity balance

Tags

Citation

Related articles…

Délimitation des terroirs dans les A.O. Rueda et Toro (Castilla y León-Espagne)

La délimitation et la caractérisation des zones viticoles posent en Espagne des problèmes spécifiques non seulement dus aux caractéristiques propres au territoire mais aussi à la dimension, la distribution et l’indice d’occupation viticole dans les appellations d’origine.

Effect of kaolin foliar application on grape cultivar Assyrtiko (Vitis vinifera L.) under vineyard conditions

In the context of climate change and for the sustainable exploitation of Mediterranean vineyards, it is necessary to use new strategies to adapt to the new climatic conditions.

Long-term flooding effects on the physiological and productive performance of Montepulciano and Sangiovese cultivars

Extreme climatic events, such as prolonged drought followed by intense flooding, increasingly impact viticulture, affecting vine physiology, productivity, and grape composition.

Sorption of aroma compounds by commercial specific yeast derivatives and the influence of polyphenols

Specific inactivated yeast derivatives (SYDs) from S. cerevisiae are obtained through thermal, mechanical, and enzymatic processes and are used to enhance wine quality.

Soil carbon changes and greenhouse gas emissions in vineyards – Is the 4 per 1000 goal realistic?

In this video recording of the IVES science meeting 2023, Hans Reiner Schultz (Hochschule Geisenheim University, Germany) speaks about soil carbon changes and greenhouse gas emissions in vineyards – is the 4 per 1000 goal realistic?. This presentation is based on an original article accessible for free on OENO One.