GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Diversity in grape composition for sugars and acidity opens options to mitigate the effect of warming during ripening

Diversity in grape composition for sugars and acidity opens options to mitigate the effect of warming during ripening

Abstract

Context and purpose of the study – The marked climate change impact on vine and grape development (phenology, sugar content, acidity …) is one of the manifestations of Genotype X Environment X Management interactions importance in viticulture. Some practices, such as irrigation, can mitigate the effect of water deficit on grape development, but warming is much more difficult to challenge. High temperatures tend to alter the acid balance of the fruit with a parallel increase in sugar concentration. In the long term, genetic improvement to select varieties better coping with temperature elevation appear as a good option to support sustainable viticulture. Nevertheless, the existing phenotypic diversity for grape quality components that are influenced by temperature is poorly understood, which jeopardizes breeding strategies. The purpose of this study was to characterize the phenotypic diversity present in the genetic resources of Vitis vinifera or that could be implemented by breeding.

Material and methods – Two critical grape development stages were characterized comparing 33 genotypes, including 12 wine grape varieties and 21 microvine lines. Berry softening and growth were precisely monitored to target the onset of ripening and physiological ripening. Main primary metabolites and cations were analysed in order to assess the genotypic differences in fruit sugars/organic balance and titratable acidity.

Results – The phenotypic diversity observed in this study was higher than initially expected. In the mature stage, the weight of the berries varied from 1.04 to 5.25 g and the sugar concentration from 751 to 1353 mmol.L-1. The organic acid composition varied both in concentration (from 80 to 250 meq.L-1) and in composition with a malate / tartrate ratio of between 0.13 to 3.62. A correlation between this ratio and the weight of berries was found. Moreover, a great diversity of cation content has been observed. The potassium content, which is the major cation in the grape, varied between 28 and 57 mmol.L-1 at physiological maturity. This combined with variations in organic acid contents, led to a range of titration acidity from 38 to 215 meq.L-1. This experiment showed that the phenotypic diversity already present in V. vinifera varieties or to be obtained by crossing opens up new perspectives for mitigating the effects of climate change on the composition of berries, notably the rise in temperature.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Antoine BIGARD1,2, Charles ROMIEU1, Dargie T. BERHE2,3, Yannick SIRE2, Cécile MARCHAL4, Sandrine DEDET4, Hernán OJEDA2,4 et Laurent TORREGROSA1,2*

AGAP, Montpellier University, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
UE of Pech Rouge, Montpellier University, INRA, Gruissan, France
Dilla University, SNNPRS, Dilla, Ethiopie
GBRC of Vassal, University of Montpellier, INRA, Montpellier SupAgro, Marseillan, France

Contact the author

Keywords

grapevine, climate changes, warming, breeding, grape composition, sugar/acidity balance

Tags

Citation

Related articles…

Grapevine xylem embolism resistance spectrum reveals which varieties have a lower mortality risk in a future dry climate

Wine growing regions have recently faced intense and frequent droughts that have led to substantial economical losses, and the maintenance of grapevine productivity under warmer and drier climate will rely notably on planting drought-resistant cultivars. Given that plant growth and yield depend on water transport efficiency and maintenance of photosynthesis, thus on the preservation of the vascular system integrity during drought, a better understanding of drought-related hydraulic traits that have a significant impact on physiological processes is urgently needed. We have worked towards this end by assessing vulnerability to xylem embolism in 30 grapevine commercial varieties encompassing red and white Vitis vinifera varieties, hybrid varieties characterized by a polygenic resistance for powdery and downy mildew, and commonly used rootstocks. These analyses further allowed a global assessment of wine regions with respect to their varietal diversity and resulting vulnerability to stem embolism. Hybrid cultivars displayed the highest vulnerability to embolism, while rootstocks showed the greatest resistance. Significant variability also arose among Vitis vinifera varieties, with Ψ12 and Ψ50 values ranging from -0.4 to -2.7 MPa and from -1.8 to -3.4 MPa, respectively. Cabernet franc, Chardonnay and Ugni blanc featured among the most vulnerable varieties while Pinot noir, Merlot and Cabernet Sauvignon ranked among the most resistant. In consequence, wine regions bearing a significant proportion of vulnerable varieties, such as Poitou-Charentes, France and Marlborough, New Zealand, turned out to be at greater risk under drought. These results highlight that grapevine varieties may not respond equally to warmer and drier conditions, outlining the importance to consider hydraulic traits associated with plant drought tolerance into breeding programmes and modeling simulations of grapevine yield maintenance under severe drought. They finally represent a step forward to advise the wine industry about which varieties and regions would have the lowest risk of drought-induced mortality under climate change.

Beyond classical statistics – data fusion coupled with pattern recognition

AIM: Patterns in data obtained from wine chemical and sensory evaluations are difficult to infer using classical statistics.

Unveiling the Grapevine Red Blotch Virus (GRBV) host-pathogen arms-race via multi-omics for enhanced viral defense 

The Grapevine Red Blotch Virus (GRBV) poses a critical challenge to the wine sector, lacking a uniquely identified vector. Current control methods involve costly and labor-intensive vine removal, emphasizing the urgency for targeted alternatives. The limited understanding of intricate host-virus interactions underscores the need for foundational knowledge to develop innovative disease control strategies. These include efforts to boost the plant’s RNA interference (RNAi) response, including RNA-based topical applications.

Modeling viticultural landscapes: a GIS analysis of the viticultural potential in the Rogue Valley of Oregon

Terroir is a holistic concept that relates to both environmental and cultural factors that together influence the grape growing to wine production continuum. The physical factors that influence the process include matching a given grape variety to its ideal climate along with optimum site characteristics of elevation, slope, aspect, and soil

METHYL SALICYLATE: A TRENDY COMPOUND MARKER OF ZELEN, A UNIQUE SLOVENIAN VARIETY

The wine market interest for autochthonous varieties, particularly from less known wine regions, has significantly raised in the past few years. In that context, Slovenia, a small country from central Europe with a long winemaking tradition, is getting more and more attention, particularly through its range of unique regional varieties. Among them, Zelen, meaning “green” in Slovene, can only be found in the Vipava valley region, located on the western side of the country, near the border with Italy. When they are young, Zelen wines display very singular aromas reminiscent of rosemary, sage and white fruit. Despite its uniqueness, Zelen wine aromatic typicality is poorly documented in the literature.