GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 A new path for sustainable development. First results in a Venetian “bio-métaéthique company“ (Italy)

A new path for sustainable development. First results in a Venetian “bio-métaéthique company“ (Italy)

Abstract

This paper will show the results of changes in income in a Veneto winery located in the municipality of Motta di Livenza (Treviso) in the North East of Italy, determined by the application of the “Holistic Universal Sustainability Charter” Metaethic 4.1CC “or” Sustainability Charter BIO-MétaÉthique 4.1CC “of GiESCO (Carbonneau, Cargnello, 2017).

These activities allowed the realization and subsequently to certify “Company BIO-MétaÉthique 4.1CC” according to the new, innovative, revolutionary “Direct Certification and Warranty of Sustainability 4.1CC” (Cargnello, Carbonneau, 2018).

Total cost of production and the “Gross Seleable Product” (GSP) of the uncertified grapes and wine “BIO-MétaÉtique 4.1CC” with those certified “BIO – MétaÉtique 4.1CC ” were compared.

The application of the “Sustainable Holistic Universal Metaethic Charter 4.1CC” or “Sustainability BIO-MétaÉthique 4.1CC” of GiESCO and the related ” Direct Certification and Warranty of Sustainability 4.1CC ” resulted in an increase in the net profit for the company between 16 and 25%.

This change in profit for the company id due to the containment of the production cost obtained above all in the vineyard by the rationalization of the management of the soil, the plant and the phytosanitary treatments and the increase in the price of certified “BIO-MétaÉtique 4.1CC bottle compared to the non-certified one.

These results will be verified with further observations in the international markets.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Vasco BOATTO1, Giovanni CARGNELLO2, Stefano SCAGGIANTE 1*, Gianni TEO1, Cristian BOLZONELLA1, Stefano LUNARDELLI2, Luigi GALLETTO1, Eugenio POMARICI1, Luigino BARISAN1

1 CIRVE:Centro Interdipartimentale per la Ricerca in Viticoltura ed Enologia del TESAF: Dipartimento di agronomia animali alimenti e risorse naturali e ambiente dell’Università di Padova: Conegliano-Treviso  (Italy)
2 Conegliano Campus 5.1C

Contact the author

Keywords

direct certification, sustainability, BIO-MétaÉtique 4.1CC, holistic approach

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Carbon isotope labeling to detect source-sink relationships in grapevines upon drought stress and re-watering

Kinetics of carbon allocation in the different plant sinks (root-shoot-fruit) competing in drought stressed and rehydrated grapevines have been investigated.

Long-Term impact of elevated CO2 exposure on grapevine physiology (Vitis vinifera L. cvs. Riesling & Cabernet Sauvignon)

Over the next 25 years, the Intergovernmental Panel on Climate Change (IPCC 2013) predicts a ~20% increase in atmospheric carbon dioxide (CO2) concentration compared to the current level. Concurrently, temperatures are steadily rising. Grapevines, known for their climate sensitivity, will show changes in phenology, physiological processes and grape compositions in response. Investigating eco-physiological processes provides insights into the response of field-grown grapevines to elevated CO2 conditions. A Free Air Carbon Dioxide Enrichment (FACE) facility was established in the Rheingau region of Germany. Two grapevine varieties (Vitis vinifera L., cvs. Riesling and Cabernet Sauvignon) were planted, with the VineyardFACE comprising three rings with ambient atmospheric CO2 (approx. 400 – 420 ppm from 2014 to 2023, aCO2) and three rings with elevated CO2 concentration (+20% to ambient; eCO2).

From protein-centered to gene-centered approaches to investigate DNA-protein interactions in grapevine

DNA-binding proteins play a pivotal role in critical cellular processes such as DNA replication, transcription, recombination, repair, and other essential activities. Consequently, investigating the interactions between DNA and proteins is of paramount importance to gain insights into these fundamental cellular mechanisms. Several methodologies have been devised to uncover DNA-protein interactions, which can be broadly categorized into two approaches. The “protein-centered” approach focuses on identifying the DNA sequences bound by a specific transcription factor or a set of TFs. Techniques falling within this category include chromatin immunoprecipitation, and protein-binding microarrays.

Soil or geology? And what’s the difference? Some observations from the New World

Observational historical geology seeks to establish the evolutionary history of the surface of Earth. This approach is applicable not only to bedrock, but to the soft material that lies at the surface, the stuff called soil by most people. The geologic perspective provides a view of this material that is quite different from that of soil science, at least as practiced by many in America.

Postharvest ozone treatment in grapevine white cultivars: Effects on grape volatile composition

During postharvest management, the metabolism of fruits remains active and continuous physico-chemical changes occur. Ozone treatment has an elicitor effect on secondary metabolites and the treatment conditions can influence the grape response to the stress (Bellincontro et al., 2017; Botondi et al., 2015). Regarding volatile organic compounds (VOCs), previous studies showed that ozone treatment during postharvest dehydration induces the biosynthesis of terpenes in Moscato bianco grapes (Río Segade et al., 2017). It is well known that grape VOCs greatly influence the organoleptic properties of wines, particularly terpenes in aromatic varieties.