GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 A new path for sustainable development. First results in a Venetian “bio-métaéthique company“ (Italy)

A new path for sustainable development. First results in a Venetian “bio-métaéthique company“ (Italy)

Abstract

This paper will show the results of changes in income in a Veneto winery located in the municipality of Motta di Livenza (Treviso) in the North East of Italy, determined by the application of the “Holistic Universal Sustainability Charter” Metaethic 4.1CC “or” Sustainability Charter BIO-MétaÉthique 4.1CC “of GiESCO (Carbonneau, Cargnello, 2017).

These activities allowed the realization and subsequently to certify “Company BIO-MétaÉthique 4.1CC” according to the new, innovative, revolutionary “Direct Certification and Warranty of Sustainability 4.1CC” (Cargnello, Carbonneau, 2018).

Total cost of production and the “Gross Seleable Product” (GSP) of the uncertified grapes and wine “BIO-MétaÉtique 4.1CC” with those certified “BIO – MétaÉtique 4.1CC ” were compared.

The application of the “Sustainable Holistic Universal Metaethic Charter 4.1CC” or “Sustainability BIO-MétaÉthique 4.1CC” of GiESCO and the related ” Direct Certification and Warranty of Sustainability 4.1CC ” resulted in an increase in the net profit for the company between 16 and 25%.

This change in profit for the company id due to the containment of the production cost obtained above all in the vineyard by the rationalization of the management of the soil, the plant and the phytosanitary treatments and the increase in the price of certified “BIO-MétaÉtique 4.1CC bottle compared to the non-certified one.

These results will be verified with further observations in the international markets.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Vasco BOATTO1, Giovanni CARGNELLO2, Stefano SCAGGIANTE 1*, Gianni TEO1, Cristian BOLZONELLA1, Stefano LUNARDELLI2, Luigi GALLETTO1, Eugenio POMARICI1, Luigino BARISAN1

1 CIRVE:Centro Interdipartimentale per la Ricerca in Viticoltura ed Enologia del TESAF: Dipartimento di agronomia animali alimenti e risorse naturali e ambiente dell’Università di Padova: Conegliano-Treviso  (Italy)
2 Conegliano Campus 5.1C

Contact the author

Keywords

direct certification, sustainability, BIO-MétaÉtique 4.1CC, holistic approach

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Evaluation of the sensory profile of doc douro red wines through sensory traditional single-point techniques and temporal dominance methods

No other agricultural product has a stronger relationship with the soil than wine. This study aimed to characterize the sensory profile of red wines from the Douro Demarcated Region (RDD) certified as DOC Douro, through the application of Quantitative Descriptive Analysis (QDA®) and Temporal Dominance of Sensations (TDS) sensory methods. QDA® provides a complete word description for all a product’s sensory properties. The TDS, which is relatively recent in the sensory field [1], allows to evaluation and description of the evolution of the dominant sensory perceptions during the tasting of a food product.Eighteen commercial wines from different producers were evaluated, six different samples representing each of the three sub-regions of the RDD.

OENOLOGICAL STRATEGIES FOR THE REMOVAL OF PINKING IN WHITE WINE

The pinking of in white wine is the turning of color from yellow to salmon hue. White wines obtained from certain grape varieties (e.g. Chardonnay, Sauvignon blanc, Riesling, Trebbiano di Lugana) showed to be susceptible to pinking [1] that has been evaluated by an assay providing the addition of hydrogen peroxide. Even if its appearance does not seem to affect the sensory properties [2], strategies are necessary for its removal. Nowadays, the treatment with polyvinylpolipirroline (PVPP) was reported to significantly decrease the pink color [3].

Evaluation of spraying effects of plant protection unmanned aerial vehicle on two different training systems of vine in Northeast China

In recent years, the application of plant protection unmanned aerial vehicle (UAV) in agricultural pest control has become more and more popular. However, there are few reports about the application of plant protection UAV for wine grapes, and there are no studies comparing the spraying effect of plant protection UAV with that of manual operation in vineyards. In this context, the objective of this study was to explore the feasibility of using plant protection UAV in vineyards instead of manual operations by evaluating the effectiveness of UAV spray in two common grape training systems in Northeast China.

Valorization of grapevine leaves: screening of polyphenol composition in 50 cultivars

Grapevine leaves are known to contain different polyphenols such as flavonols, catechins and stilbenes, which are known to act as main contributors for plant defense against pathogens (1). While the composition for some major cultivars has been studied, there is lack of systematic comparison about the content of these compounds in the wide ecodiversity of Vitis vinifera cv. Recent advances in Mass Spectrometry-based Metabolomics allow a wider and more sensitive description of these polyphenols, as instance of those present in leaves (2). Such information could help to better explain leaf traits regarding the development of the leaf or to the plant tolerance to a pathogen. Moreover, these compounds offer appealing applications for human health due to their antioxidant activities.

Mgaloblishvili Rpv29 and Rpv31 loci reveal new insights on downy mildew resistance sources in Vitis vinifera

Downy mildew, a disease caused by Plasmopara viticola (Berk. et Curt.) Berl. and De Toni, is one of the strongest threats to grapevine (Vitis vinifera L.) production. Recently, sources of resistance to downy mildew were identified among Caucasian germplasm. Among them, the Georgian variety Mgaloblishvili revealed a unique resistance mechanism. A genome wide association study (GWAS) allowed the identification of the genetic bases of Mgaloblishvili resistance, the loci Rpv29, Rpv30 and Rpv31. To dissect the three resistance loci, Mgaloblishvili genome was sequenced using PacBio HiFi reads and assembled.