GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 A new path for sustainable development. First results in a Venetian “bio-métaéthique company“ (Italy)

A new path for sustainable development. First results in a Venetian “bio-métaéthique company“ (Italy)

Abstract

This paper will show the results of changes in income in a Veneto winery located in the municipality of Motta di Livenza (Treviso) in the North East of Italy, determined by the application of the “Holistic Universal Sustainability Charter” Metaethic 4.1CC “or” Sustainability Charter BIO-MétaÉthique 4.1CC “of GiESCO (Carbonneau, Cargnello, 2017).

These activities allowed the realization and subsequently to certify “Company BIO-MétaÉthique 4.1CC” according to the new, innovative, revolutionary “Direct Certification and Warranty of Sustainability 4.1CC” (Cargnello, Carbonneau, 2018).

Total cost of production and the “Gross Seleable Product” (GSP) of the uncertified grapes and wine “BIO-MétaÉtique 4.1CC” with those certified “BIO – MétaÉtique 4.1CC ” were compared.

The application of the “Sustainable Holistic Universal Metaethic Charter 4.1CC” or “Sustainability BIO-MétaÉthique 4.1CC” of GiESCO and the related ” Direct Certification and Warranty of Sustainability 4.1CC ” resulted in an increase in the net profit for the company between 16 and 25%.

This change in profit for the company id due to the containment of the production cost obtained above all in the vineyard by the rationalization of the management of the soil, the plant and the phytosanitary treatments and the increase in the price of certified “BIO-MétaÉtique 4.1CC bottle compared to the non-certified one.

These results will be verified with further observations in the international markets.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Vasco BOATTO1, Giovanni CARGNELLO2, Stefano SCAGGIANTE 1*, Gianni TEO1, Cristian BOLZONELLA1, Stefano LUNARDELLI2, Luigi GALLETTO1, Eugenio POMARICI1, Luigino BARISAN1

1 CIRVE:Centro Interdipartimentale per la Ricerca in Viticoltura ed Enologia del TESAF: Dipartimento di agronomia animali alimenti e risorse naturali e ambiente dell’Università di Padova: Conegliano-Treviso  (Italy)
2 Conegliano Campus 5.1C

Contact the author

Keywords

direct certification, sustainability, BIO-MétaÉtique 4.1CC, holistic approach

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Biodiversity in the vineyard agroecosystem: exploring systemic approaches

Biodiversity conservation and restoration are essential for guarantee the provision of ecosystem services associated to vineyard agroecosystem such as climate regulation trough carbon sequestration and control of pests and diseases. Most of published research dealing with the complexity of the vineyard agroecosystems emphasizes the necessity of innovative approaches, including the integration of information at different temporal and spatial scales and development of systemic analysis based on modelling. A biodiversity survey was conducted in the Franciacorta wine-growing area (Lombardy, Italy), one of the most important Italian wine-growing regions for sparkling wine production, considering a portion of the territory of 112 ha. The area was divided into several Environmental Units (EUs), defined as a whole vineyard or portion of vineyard homogenous in terms of four agronomic characteristics: planting year, planting density, cultivar, and training system. In each EU a set of compartments was identified and characterised by specific variables. The compartments are meteorology, morphology (altitude, slope, aspect, row orientation, and solar irradiance), ecological infrastructures and management. The landscape surrounding EU was also characterised in terms of land-use in a buffer zone of 500 m. For each component a specific methodology was identified and applied. Different statistical approaches were used to evaluate the method to integrate the information related to different compartments within the EU and related to the buffer zone. These approaches were also preliminarily evaluated for their ability to describe the contribution of biodiversity and landscape components to ecosystem services. This methodological exploration provides useful indication for the development of a fully systemic approach to structural and functional biodiversity in vineyard agroecosystems, contributing to promote a multifunctional perspective for the all wine-growing sector.

Effect of SO2, GSH and gallotannins on the shelf-life of a cortese white wine

Studying the effect of the addition of reduced glutathione (GSH) and/or gallotannins at bottling to limit the use of SO2 in white winemaking.

Effects of wine versus de-alcoholised wine on the microbiota-gut-brain axis in a tau-pathology murine model of Alzheimer’s disease

Alzheimer’s Disease (AD) is the most common disorder associated with cognitive impairment and the main cause of dementia globally. Multiple evidence in the last decade suggest that the gut microbiome plays an important role in the pathogenesis and progression of AD via the microbiota-gut-brain axis, a network wherein microbiome and the central nervous system crosstalk via endocrine, immune, neural, and microbial metabolites signalling pathways.

Yeast derivatives: an innovative approach to produce Oenococcus oeni under biofilm form?

The malolactic fermentation can occur naturally or be induced by inoculation of selected bacterial strains, most commonly of Oenococcus oeni.

Active thermography to determine grape bud mortality: system design and feasibility

Bud death due to cold damage is a recurrent and major economic issue with Vitis vinifera L. in the Northeastern U.S. winegrowing regions. Primary buds – and sometimes secondary and tertiary buds – are often damaged by fluctuating temperatures in the winter and early spring. To maintain balanced vegetative and reproductive growth of a vine, pruning practices need to be adjusted to account for bud damage. Conventional bud damage assessment requires growers to sample canes/spurs, cut nodes with a razor blade, and then visually assess bud damage. This process is laborious and becomes a major barrier for damage-compensated pruning decision-making, leading to too few live buds per vine and the associated excessive vigor and low yield that result. The overarching goal of this study was to develop an active thermographic system for non-destructive detection of bud damage in the vineyard.