GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Berry weight loss in Vitis vinifera (L.) cultivars during ripening

Berry weight loss in Vitis vinifera (L.) cultivars during ripening

Abstract

Abstract: Context and purpose of the study – Berry shriveling (BS) in vineyards are caused by numerous factors such as sunburn, dehydration, stem necrosis. Climate change results in an increase in day and night temperatures, rainfall throughout the year, changes in the timing and quantities, long dry summers and a combination of climatic variability such as floods, droughts and heatwaves). Grape development and its composition at harvest is influenced by the latter as grape metabolites are sensitive to the environmental conditions. The grape berry experiences water loss and an increase in flavour development as a result of the BS. An increased sugar content in grapes will result in higher alcohol wines and concentration of grape aromas which may be detrimental to the final wine quality. More so, crop estimations are negatively impacted as a result of BS which results in lower compensation for grape producers. This pilot study seeked to investigate the berry weight loss in twelve Vitis vinifera (L.) cultivars in WashingtonState.

Material and methods – This study was conducted during the 2018 growing seasons at the Washington State University (WSU) Irrigated Agriculture Research and Extension Center (IAREC) in Prosser, Washington, USA (46°17’N; 119°44’W; 365 m a.s.l.). The vineyard contained 30 wine grape cultivars (Vitis vinifera) separated into 16 main blocks of 13 row seach along with border sections of 5 vines each. All vines were planted at a spacing of m × 2.7 m (2058 vines/hectare). Grape cultivars were separated into groups of either white or red, with all vines planted in a north-south orientation using the Vertical Shoot Positioned (VSP) training system.Each of the 16 main blocks was dedicated too neoffour main cultivars;Merlot,CabernetSauvignon,Chardonnay, orRiesling. Border sections containing the additional 26 cultivars were located on the southern, eastern, and western portionsofthevineyard.Eachborder cultivar sectionconsistedofthreeorfourrepetitionsoffivevineseach.All weather data was gathered from the Roza automated weather station and the WSU AgWeatherNet system (AgWeatherNet2018).Berry fresh weight and total soluble solids were determined just after véraison throughout berry development.

Results – In this study on weight loss in ripening white (Chardonnay, Weisser Riesling, Gewurztraminer, Alvarinho, Muscat blanc and Sémillon) and red grape cultivars (Cabernet Sauvignon, Merlot noir, Grenache, Lemberger, Malbec, Cabernet franc) ripening curves of non-solutes per berry (mostly water) were similar to the berry weight curves. Solutes per berry (mostly sugar) increased to a maximum berry weight for most of the cultivars. Prior to véraison phloem sap is the only source for water and solutes that enter grape berries until maximum berry weight followed by a decrease in the solutes per berry. Later during the ripening stage berry shrinking occurred due to elevated transpiration, which resulted in an increase in ˚Brix (solutes). Grape cultivar, environmental and cultivation practices have an impact on the concentration of berry of solutes, which dictates the composition and will have an impact on the wine quality. However, this study needs to be repeated and the wine quality should be assessed.

DOI:

Publication date: September 18, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Erna BLANQUAERT1*, Markus KELLER2

1 Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland7602, South Africa
2 Irrigated Agricultural Research and Extension Center, Washington State University, 24106 N. Bunn Road, Prosser, WA99350

Contact the author

Keywords

grape berry, berry weight, berry shrinkage

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Evolution of cabernet sauvignon wines macerated with their own toasted vine-shoots

Toasted pruning vine-shoots represent a promising new enological tool for developing wines with chemical and organoleptic high quality, allowing that the resources of the vineyard to be returned to the wine through a “circular process”.

Synthesis of the contribution of the Giesco (group of international experts of vitivinicultural systems for cooperation) to the study of terroirs

Since 1998, the GiESCO (previously named GESCO: Groupe d’Etude des Systèmes de COnduite de la vigne) has provided the scientific community with relevant contributions to the study of terroirs. Here is a synthesis of the main terroir-related fields and the major ideas the GiESCO has developed: Basic Terroir Unit and climate, Vine Ecophysiology and microclimate – moderate drought, Vineyard heterogeneity and new technologies, Viticultural Terroir Unit and canopy management, Terroir – Territory and man.

Decline of new vineyards in Southern Spain

In-season vineyard pest management relies on proper timing, selection, and application of products. Most of the research on pest management tends to focus on the influence of regional conditions on these aspects, with an emphasis on product timing and efficacy evaluation. One aspect that is not fully vetted in various vineyard regions is application (sprayer) technology. The purpose of this study was to determine the influence of regional conditions on sprayer performance in commercial wine grape vineyards in eastern Washington.

Characterization of spatial and temporal soil water status in vineyard by DC resistivity measurements

We performed a DC resistivity monitoring experiment during eight months in 2003. Low, medium and high resolution measurements have been carried out at various locations of a vineyard. General apparent resistivity mapping evidences the spatial variations of the summer drying of the subsurface.

Développement de l’appareil végétatif et maturation du raisin sur quatre sols de Pomerol en 1995

The Pomerol vineyard, located 35 km east of Bordeaux, covers around 800 ha on the left bank of the Isle. There is a system of fluvial terraces with more or less coarse gravel and pebble spreading, resting on a Tertiary substratum ranging from the Middle to Upper Eocene to the Lower Oligocene (Dubreuilh, 1993). This interweaving of terraces of varying thickness results in a brutal superposition of differentiated materials which give rise to various types of soil. Several site studies in this sector of the Libounais show significant morphological and analytical differences from one point to another (Guilloux et al ., 1978; Duteau, 1982; Van Leeuwen et al.., 1989). The distribution of the soils of the Pomerol vineyard was studied and resulted in a cartography at 1/25000th (Merouge, 1995).