GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Berry weight loss in Vitis vinifera (L.) cultivars during ripening

Berry weight loss in Vitis vinifera (L.) cultivars during ripening

Abstract

Abstract: Context and purpose of the study – Berry shriveling (BS) in vineyards are caused by numerous factors such as sunburn, dehydration, stem necrosis. Climate change results in an increase in day and night temperatures, rainfall throughout the year, changes in the timing and quantities, long dry summers and a combination of climatic variability such as floods, droughts and heatwaves). Grape development and its composition at harvest is influenced by the latter as grape metabolites are sensitive to the environmental conditions. The grape berry experiences water loss and an increase in flavour development as a result of the BS. An increased sugar content in grapes will result in higher alcohol wines and concentration of grape aromas which may be detrimental to the final wine quality. More so, crop estimations are negatively impacted as a result of BS which results in lower compensation for grape producers. This pilot study seeked to investigate the berry weight loss in twelve Vitis vinifera (L.) cultivars in WashingtonState.

Material and methods – This study was conducted during the 2018 growing seasons at the Washington State University (WSU) Irrigated Agriculture Research and Extension Center (IAREC) in Prosser, Washington, USA (46°17’N; 119°44’W; 365 m a.s.l.). The vineyard contained 30 wine grape cultivars (Vitis vinifera) separated into 16 main blocks of 13 row seach along with border sections of 5 vines each. All vines were planted at a spacing of m × 2.7 m (2058 vines/hectare). Grape cultivars were separated into groups of either white or red, with all vines planted in a north-south orientation using the Vertical Shoot Positioned (VSP) training system.Each of the 16 main blocks was dedicated too neoffour main cultivars;Merlot,CabernetSauvignon,Chardonnay, orRiesling. Border sections containing the additional 26 cultivars were located on the southern, eastern, and western portionsofthevineyard.Eachborder cultivar sectionconsistedofthreeorfourrepetitionsoffivevineseach.All weather data was gathered from the Roza automated weather station and the WSU AgWeatherNet system (AgWeatherNet2018).Berry fresh weight and total soluble solids were determined just after véraison throughout berry development.

Results – In this study on weight loss in ripening white (Chardonnay, Weisser Riesling, Gewurztraminer, Alvarinho, Muscat blanc and Sémillon) and red grape cultivars (Cabernet Sauvignon, Merlot noir, Grenache, Lemberger, Malbec, Cabernet franc) ripening curves of non-solutes per berry (mostly water) were similar to the berry weight curves. Solutes per berry (mostly sugar) increased to a maximum berry weight for most of the cultivars. Prior to véraison phloem sap is the only source for water and solutes that enter grape berries until maximum berry weight followed by a decrease in the solutes per berry. Later during the ripening stage berry shrinking occurred due to elevated transpiration, which resulted in an increase in ˚Brix (solutes). Grape cultivar, environmental and cultivation practices have an impact on the concentration of berry of solutes, which dictates the composition and will have an impact on the wine quality. However, this study needs to be repeated and the wine quality should be assessed.

DOI:

Publication date: September 18, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Erna BLANQUAERT1*, Markus KELLER2

1 Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland7602, South Africa
2 Irrigated Agricultural Research and Extension Center, Washington State University, 24106 N. Bunn Road, Prosser, WA99350

Contact the author

Keywords

grape berry, berry weight, berry shrinkage

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Nitrogen requirements of table grape cultivars grown in the san Joaquin valley of California

Ground water in the interior valleys of California is contaminated with nitrates derived from agricultural activities, primarily the over-fertilization of crops.

The state-of-the-art of grapevine biotechnology and new breeding technologies (NBTS)

 The manipulation of the genetic basis controlling grapevine adaptation and phenotypic plasticity can be performed either by classical genetics or biotechnologies.

The terroir of winter hardiness: a three year investigation of spatial variation in winter hardiness, water status, yield, and berry composition of riesling in the niagara region using geomatic technologies

Grapevine winter hardiness is a key factor in vineyard success in many cool climate wine regions. Winter hardiness may be governed by several factors in addition to extreme weather conditions – e.g. soil factors (texture, chemical composition, moisture, drainage), vine water status, and yield– that are unique to each site.

PulvéLab: an experimental vineyard for innovation in precision spraying

One of the ways to reduce the use of pesticides is to adapt their dosage to the needs of the plant by using variable rate technology for managing field spatial variability. The recent evolution of technologies in the field of robotics, mechatronics and new information and communication technologies

Hyperspectral imaging for precision viticulture

Precision viticulture aims to optimize vineyard management by monitoring and responding to variability within vine plots. this work presents a comprehensive study on the application of hyperspectral imaging (hsi) technology for monitoring purposes in precision viticulture. authors explore the deployment of hsi sensors on various platforms including laboratory settings, terrestrial vehicles, and unmanned aerial vehicles, facilitating the collection of high-resolution data across extensive vineyard areas.