GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Berry weight loss in Vitis vinifera (L.) cultivars during ripening

Berry weight loss in Vitis vinifera (L.) cultivars during ripening

Abstract

Abstract: Context and purpose of the study – Berry shriveling (BS) in vineyards are caused by numerous factors such as sunburn, dehydration, stem necrosis. Climate change results in an increase in day and night temperatures, rainfall throughout the year, changes in the timing and quantities, long dry summers and a combination of climatic variability such as floods, droughts and heatwaves). Grape development and its composition at harvest is influenced by the latter as grape metabolites are sensitive to the environmental conditions. The grape berry experiences water loss and an increase in flavour development as a result of the BS. An increased sugar content in grapes will result in higher alcohol wines and concentration of grape aromas which may be detrimental to the final wine quality. More so, crop estimations are negatively impacted as a result of BS which results in lower compensation for grape producers. This pilot study seeked to investigate the berry weight loss in twelve Vitis vinifera (L.) cultivars in WashingtonState.

Material and methods – This study was conducted during the 2018 growing seasons at the Washington State University (WSU) Irrigated Agriculture Research and Extension Center (IAREC) in Prosser, Washington, USA (46°17’N; 119°44’W; 365 m a.s.l.). The vineyard contained 30 wine grape cultivars (Vitis vinifera) separated into 16 main blocks of 13 row seach along with border sections of 5 vines each. All vines were planted at a spacing of m × 2.7 m (2058 vines/hectare). Grape cultivars were separated into groups of either white or red, with all vines planted in a north-south orientation using the Vertical Shoot Positioned (VSP) training system.Each of the 16 main blocks was dedicated too neoffour main cultivars;Merlot,CabernetSauvignon,Chardonnay, orRiesling. Border sections containing the additional 26 cultivars were located on the southern, eastern, and western portionsofthevineyard.Eachborder cultivar sectionconsistedofthreeorfourrepetitionsoffivevineseach.All weather data was gathered from the Roza automated weather station and the WSU AgWeatherNet system (AgWeatherNet2018).Berry fresh weight and total soluble solids were determined just after véraison throughout berry development.

Results – In this study on weight loss in ripening white (Chardonnay, Weisser Riesling, Gewurztraminer, Alvarinho, Muscat blanc and Sémillon) and red grape cultivars (Cabernet Sauvignon, Merlot noir, Grenache, Lemberger, Malbec, Cabernet franc) ripening curves of non-solutes per berry (mostly water) were similar to the berry weight curves. Solutes per berry (mostly sugar) increased to a maximum berry weight for most of the cultivars. Prior to véraison phloem sap is the only source for water and solutes that enter grape berries until maximum berry weight followed by a decrease in the solutes per berry. Later during the ripening stage berry shrinking occurred due to elevated transpiration, which resulted in an increase in ˚Brix (solutes). Grape cultivar, environmental and cultivation practices have an impact on the concentration of berry of solutes, which dictates the composition and will have an impact on the wine quality. However, this study needs to be repeated and the wine quality should be assessed.

DOI:

Publication date: September 18, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Erna BLANQUAERT1*, Markus KELLER2

1 Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland7602, South Africa
2 Irrigated Agricultural Research and Extension Center, Washington State University, 24106 N. Bunn Road, Prosser, WA99350

Contact the author

Keywords

grape berry, berry weight, berry shrinkage

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Influence of mixed fermentations with Starmerella bacillaris and Saccharomyces cerevisiae on malolactic fermentation by Lactobacillus plantarum and Oenococcus oeni in wines

Over the last years, the potential use of non-Saccharomyces yeasts to modulate the production of target metabolites of oenological interest has been well recognized. Among non-Saccharomyces yeasts, Starmerella bacillaris (synonym Candida zemplinina) is considered one of the most promising species to satisfy modern market and consumers preferences due to its peculiar characteristic (enhance glycerol and total acidity contents and reduce ethanol production). Mixed fermentations using Starm. bacillaris and Saccharomyces cerevisiae starter cultures represent a way to modulate metabolites of enological interest, taking advantage of the phenotypic specificities of the former and the ability of the latter to complete the alcoholic fermentation. However, the consumption of nutrients by these species and their produced metabolites may inhibit or stimulate the growth (and malolactic activity) of lactic acid bacteria (LAB).

Nitrogen uptake, translocation and YAN in berries upon water deficit in grapevines with contrasting stomatal sensitivity

Nitrogen (N2) is critical in grape berries, especially in organic wine making. After intake, N2 follows various metabolic and allocation routes and, from veraison, partly reallocates into berries. Water deficit affects the N2 nutrition due to a poor diffusion in soil solution and vascular mobilisation. Also, affects photosynthesis and the energy needed for metabolism, whose extent would depend on the stomatal sensitivity of the plant. We have assessed the effect of a moderate water deficit from pea size, in 3 years old field grown potted plants of Chardonnay (CH) and Cabernet Sauvignon (CS), differing in stomatal sensitivity, on the N2 status of plant parts. Water deficit reduced photosynthesis, leaf area and fresh and dry plant mass along the season, but up to a higher extent in CS.

Comparison of destructive and non-destructive measurements of table grape berries to assess quality parameters using spectroscopy

The quality of table grapes is critically influenced by several parameters, including sugar content, acidity, firmness, and overall appearance.

Heat waves and drought stress impact grapevine growth and physiology

Recurring heat and drought episodes during the growing season can produce adverse impacts on grape production in many wine regions around the world.

New insight the pinking phenomena of white wine

Pinking of white wine is an undesired change potentially occurring over storage, leading to the turning of color from yellow into salmon-red hue.