GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Berry weight loss in Vitis vinifera (L.) cultivars during ripening

Berry weight loss in Vitis vinifera (L.) cultivars during ripening

Abstract

Abstract: Context and purpose of the study – Berry shriveling (BS) in vineyards are caused by numerous factors such as sunburn, dehydration, stem necrosis. Climate change results in an increase in day and night temperatures, rainfall throughout the year, changes in the timing and quantities, long dry summers and a combination of climatic variability such as floods, droughts and heatwaves). Grape development and its composition at harvest is influenced by the latter as grape metabolites are sensitive to the environmental conditions. The grape berry experiences water loss and an increase in flavour development as a result of the BS. An increased sugar content in grapes will result in higher alcohol wines and concentration of grape aromas which may be detrimental to the final wine quality. More so, crop estimations are negatively impacted as a result of BS which results in lower compensation for grape producers. This pilot study seeked to investigate the berry weight loss in twelve Vitis vinifera (L.) cultivars in WashingtonState.

Material and methods – This study was conducted during the 2018 growing seasons at the Washington State University (WSU) Irrigated Agriculture Research and Extension Center (IAREC) in Prosser, Washington, USA (46°17’N; 119°44’W; 365 m a.s.l.). The vineyard contained 30 wine grape cultivars (Vitis vinifera) separated into 16 main blocks of 13 row seach along with border sections of 5 vines each. All vines were planted at a spacing of m × 2.7 m (2058 vines/hectare). Grape cultivars were separated into groups of either white or red, with all vines planted in a north-south orientation using the Vertical Shoot Positioned (VSP) training system.Each of the 16 main blocks was dedicated too neoffour main cultivars;Merlot,CabernetSauvignon,Chardonnay, orRiesling. Border sections containing the additional 26 cultivars were located on the southern, eastern, and western portionsofthevineyard.Eachborder cultivar sectionconsistedofthreeorfourrepetitionsoffivevineseach.All weather data was gathered from the Roza automated weather station and the WSU AgWeatherNet system (AgWeatherNet2018).Berry fresh weight and total soluble solids were determined just after véraison throughout berry development.

Results – In this study on weight loss in ripening white (Chardonnay, Weisser Riesling, Gewurztraminer, Alvarinho, Muscat blanc and Sémillon) and red grape cultivars (Cabernet Sauvignon, Merlot noir, Grenache, Lemberger, Malbec, Cabernet franc) ripening curves of non-solutes per berry (mostly water) were similar to the berry weight curves. Solutes per berry (mostly sugar) increased to a maximum berry weight for most of the cultivars. Prior to véraison phloem sap is the only source for water and solutes that enter grape berries until maximum berry weight followed by a decrease in the solutes per berry. Later during the ripening stage berry shrinking occurred due to elevated transpiration, which resulted in an increase in ˚Brix (solutes). Grape cultivar, environmental and cultivation practices have an impact on the concentration of berry of solutes, which dictates the composition and will have an impact on the wine quality. However, this study needs to be repeated and the wine quality should be assessed.

DOI:

Publication date: September 18, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Erna BLANQUAERT1*, Markus KELLER2

1 Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland7602, South Africa
2 Irrigated Agricultural Research and Extension Center, Washington State University, 24106 N. Bunn Road, Prosser, WA99350

Contact the author

Keywords

grape berry, berry weight, berry shrinkage

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Development of FTIR partial least squares models for polyphenol quantification in red wine during fermentation

Polyphenolic compounds are considered to have a major impact on the quality of red wines. Sensory impact, such as astringency and bitterness, stems directly from tannin composition. Thenceforth, quick analytical measurement of phenolic compounds appears to be a real challenge for winemaking monitoring and process control. Many methods were developed to analyzed polyphenols in wine, but they are time-consuming and require chemistry skills and equipment, not suitable for a rapid routine analysis. A reliable and rapid method to obtain this kind of measurement is Fourier Transform Infrared (FTIR) spectroscopy.

Impact of Ecklonia maxima seaweed extract on the vegetative, reproductive and microbiome in Vitis vinifera L. cv Cabernet-Sauvignon

Context and purpose of the study. Climate change is a major challenge in wine production. It results in erratic weather conditions which may lead to a reduction in grape yield and the subsequent grape and wine quality.

Sustaining wine identity through intra-varietal diversification

With contemporary climate change, cultivated Vitis vinifera L. is at risk as climate is a critical component in defining ecologically fitted plant materiel. While winegrowers can draw on the rich diversity among grapevine varieties to limit expected impacts (Morales-Castilla et al., 2020), replacing a signature variety that has created a sense of local distinctiveness may lead to several challenges. In order to sustain wine identity in uncertain climate outcomes, the study of intra-varietal diversity is important to reflect the adaptive and evolutionary potential of current cultivated varieties. The aim of this ongoing study is to understand to what extent can intra-varietal diversity be a climate change adaptation solution. With a focus on early (Sauvignon blanc, Riesling, Grolleau, Pinot noir) to moderate late (Chenin, Petit Verdot, Cabernet franc) ripening varieties, data was collected for flowering and veraison for the various studied accessions (from conservatory plots) and clones. For these phenological growing stages, heat requirements were established using nearby weather stations (adapted from the GFV model, Parker et al., 2013) and model performances were verified. Climate change projections were then integrated to predict the future behaviour of the intra-varietal diversity. Study findings highlight the strong phenotypic diversity of studied varieties and the importance of diversification to enhance climate change resilience. While model performances may require improvements, this study is the first step towards quantifying heat requirements of different clones and how they can provide adaptation solutions for winegrowers to sustain local wine identity in a global changing climate. As genetic diversity is an ongoing process through point mutations and epigenetic adaptations, perspective work is to explore clonal data from a wide variety of geographic locations.

Hyperspectral imaging and Raman spectroscopy, nondestructive methods to assess wine grape composition

Grape composition is of high interest for producing quality wines. For that, grape analyses are necessary, and they still require sample preparation, whether with classical analyses or with NIR analyses.

Radiative and thermal effects on fruit ripening induced by differences in soil colour

One of the intrinsic parts of a vineyard “terroir” is soil type and one of the characteristics of the soil is it’s colour. This can differ widely from bright white, as for some calcareous soils, to red, as in “terra rossa” soils, or black, as in slate soils.