
Functional characterization of grapevine MLO genes to define their roles in Powdery mildew susceptibility by CRISPR/Cas9 genome editing
Abstract
Successful powdery mildew (PM) infection in plants relies on Mildew Resistance Locus O (MLO) genes, which encode susceptibility factors essential for fungal penetration. In Arabidopsis, loss-of-function mutations in three clade-V MLOs, AtMLO2, 6, and 12 confer complete resistance to PM infection. Since then, efforts are on to discover MLO genes contributing to PM susceptibility in many species to introduce mlo-based PM-resistance. Earlier studies in tomato and grapevine, using the RNAi approach, attributed PM susceptibility to SlMLO1, 5, and 8 and VvMLO3, 13, and 17, respectively indicating likely functional redundancy among MLOs. Here, we disrupted the closest grapevine orthologues, VvMLO3, 4, 13, and 17 through CRISPR/Cas9-mediated mutagenesis in the microvine model with the goal of identifying the candidate MLO genes to introduce mlo-based PM resistance. Individual mutants mlo3, mlo4, mlo13 and mlo17 showed 8 to 50% less infection to E. necator, whereas double mutants, mlo3/4, mlo3/13 andmlo13/17 and triple mutant mlo3/13/17 showed 60 to 90% less infection. But the quadruple mlo3/4/13/17 mutant plants showed near complete PM resistance. Considerable differences were observed in the resistance level of clones among the triple and quadruple mutants due to the differences in editing efficiency of individual guide RNAs. Some mutants showed pleiotropic effects in the growth and development, ranging from early senescence and stunted growth to non-flowering phenotypes, which also seemed to depend on the percentage of gene-edited cells in the plant. The overarching goal is to excise the genome-integrated T-DNA cassette from the mutants using CRISPR Ribonucleoproteins for transgene-free PM resistance.
DOI:
Issue: Open GPB 2024
Type: Article
Authors
1,2 Department of Horticulture, Oregon State University, Corvallis, OR, USA
3 Oregon Wine Research Institute, Oregon State University, Corvallis, OR, USA