Terroir 2014 banner
IVES 9 IVES Conference Series 9 SSR analysis of some Vitis sylvestris (GMEL.) accessions of the Szigetköz and Fertő-hanság national park, Hungary

SSR analysis of some Vitis sylvestris (GMEL.) accessions of the Szigetköz and Fertő-hanság national park, Hungary

Abstract

The evolution of cultivated plants played important role in the ascent of humanity. Research of their origin and evolution started at the beginning of the20th century, but till nowadays a lot of questions remain open. A large number of theories exist about the evolution of the European grapevine (Vitis vinifera L.). The Vitis sylvestris GMEL. in Hungary is a protected species. The quest and reservation of its populations are significant in terms of nature conservation and reserve of biodiversity as well. Based on theoretical and practical researches, it is supposed, that this species itself, or crossing with other species could be the progenitor of the European grapevine (Vitis vinifera L.). 

In this study the quest and the SSR analysis of the Vitis sylvestris GMEL. populations of the Szigetköz and Fertő-Hanság National Park of Hungary are intended. 20 different genotypes of woodland grape (Vitis sylvestris GMEL.), 10 cultivars of European grape (Vitis vinifera L.) and 10 species/genotypes of rootstocks were analysed in 16 SSR loci of different linking groups. 

The results show, that the analysed Vitis sylvestris accessions form an distinct group, but are closer to the Vitis vinifera cultivars, than to the rootstocks. This raise the probability, that these woodland grapes are true-to-type Vitis sylvestris.

DOI:

Publication date: August 18, 2020

Issue: Terroir 2014

Type: Article

Authors

G. JAHNKE (1), Z. NAGY (1), G. KOLTAI (2), J. MÁJER (1)

(1) National Agricultural Research and Innovation Centre, Research Institute for Viticulture and Enology, Badacsonytomaj, Hungary 
(2) University of West Hungary Faculty of Agricultural and Food Sciences, Mosonmagyaróvár, Hungary 

Keywords

Vitis sylvestris (GMEL.), biodiversity, progenitor, SSR analysis, woodland grape, European grape, genotypes, true-to-type

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Grape seed powder as an alternative to bentonite for wine fining

PR proteins can cause haze in wines, and the risk is to keep the wine unsold. Generally, in winemaking bentonite solves this problem by removing proteins, but it is not a renewable resource, has poor settling, which means difficulty in filtering after use and a considerable loss of wine, it is not a specific adsorbent and may reduce aromas and flavor compounds

Tannin potential and molecular toasting in cooperage: a tool to modulate fruity expression of red wine

AIM: Oak wood play traditionally a huge role in making fine red wines. During wine maturation, barrel yields some of its constituents to the wine and leads to the improvement of its quality, contributing to richness and complexity [1].

Antifungal and Laccase-Suppressing Activity of Phenolic Compounds and Their Oxidation Products on Grey Mold-Fungus Botrytis cinerea

Botrytis cinerea causes grey mold that results in severe problems for wine makers worldwide. Infected grapes lead to quality deterioration including formation of off-flavors or browning. The latter is caused by the enzyme laccase which is capable of oxidizing a wide range of phenolic compounds. Since the use of conventional pesticides is associated with many concerns of consumers and authorities regarding environmental and health related issues and may result in fungicide resistance, the development of green alternatives is gaining more attention.

Deciphering the color of rosé wines using polyphenol targeted metabolomics

The color of rosés wines is extremely diverse and a key element in their marketing. It is due to the presence of red anthocyanins extracted from grape skins and pigments formed from them and other wine constituents during wine-making.

Plant regeneration via somatic embryogenesis and preliminary trials for the application of the DNA-free genome editing in grapevine cv. Corvina veronese

Grapevine (Vitis spp.) is a globally significant fruit crop, and enhancing its agronomic and oenological traits is crucial to meet changing agricultural conditions and consumer demands. Conventional breeding has played a key role in domesticating grapevine varieties, but it is a time-consuming process to develop new cultivars with desirable traits for cultivation.
New plant breeding techniques (NpBTs) offer a potential revolution in grapevine cultivation, and genome editing has shown promise for targeted mutagenesis. The success of these biotechnological approaches relies on efficient in vitro regeneration protocols, particularly through somatic embryogenesis (SE).