GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Ozone treatment: a solution to improve sanitary and physiological quality of vine plant

Ozone treatment: a solution to improve sanitary and physiological quality of vine plant

Abstract

Context and purpose of the study – The vineyard world is faced to a lot of fungal diseases. Grapevine Trunk Diseases (GTD) are some of the major. After exhibiting chronical foliar symptoms, grapevines can die by apoplexy within only few days. A range species of fungi was described to be associated with the apparition of early symptoms of GTD. It is well known that ozone dissolved into water is a powerful disinfectant with no remanence. The main goal of this study was to test the efficiency of this process on different fungal species associated with GTD in vitro and in planta conditions.

Material and methods – In vitro sanitary tests: Eighteen strains of two different species associated with GTD were selected (Phaeomoniella chlamydospora and Phaeoacremonium minimum). Ozone dissolved into water (4.5 g.m-3 according the Henry’s law) or autoclaved demineralized water (control) were applied on spore suspensions from strains. Suspensions were then plated on agar medium. Germinating spores were observed after five days. In vivo sanitary tests:Cuttings of Vitis vinifera Cabernet-Sauvignon clone 15 were drilled until the vascular channels. In each injury, plants received 20 µL of spore suspension (105 spores.mL-1) of P. minimum. Immediately after inoculation, infected wounded damages were treated with 20 µL of ozone dissolved into water (4.5 g.m-3 according the Henry’s law). The fungal development was evaluated 4, 6 and 9 weeks after inoculation by q-PCR.

Results – In vitro sanitary tests: Solution of ozone dissolved into water presented a complete sporicide effect. Indeed, no spore germinated in ozonated treatments whereas water treated controls normally developed. In vivo sanitary tests:The anti-fungal abilities of ozone treatment were secondly assessed by quantification of P. minimum DNA in woody tissues (via qPCR). Four and six weeks after inoculation, ozone treatment strongly reduced the source of inoculum present in the injury, resulting in more of 50% decrease of the number of P. minimum copies per ng of total. After nine weeks, the quantity of DNA is more important in ozone modality than in control modality. These results suggest that ozone treatment slowed down the fungal colonization via its primary sporicide effect in cutting-wounding conditions. Finally, consequences on the physiological aspect of the plant after ozone treatment should be discussed during the congress thanks to some news results.

DOI:

Publication date: September 26, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Ana ROMEO OLIVAN1,ǂ, Marielle PAGÈS1, 2,*,ǂ, Coralie BRETON1, Frédéric VIOLLEAU2,3 and Alban JACQUES1

1 PPGV, INP-PURPAN, F-31076 Toulouse, France
2 Plateforme TOAsT, Université de Toulouse, INP-PURPAN, Toulouse, France
3 Laboratoire de Chimie Agro-industrielle, LCA, Université de Toulouse, INRA, 31000 Toulouse, France
ǂ These authors contributed equally to this work

Contact the author

Keywords

grapevine, fungi, ozone, disinfection, growth

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

The adaptative capacity of a viticultural area (Valle Telesina, Southern Italy) to climate changes

The viticulture aiming at the production of high quality wine is very important for the landscape conservation, because it allows to combine high farmer income with soil conservation

Non-linear unmixing as an innovative tool to detect vine diseases in UAVs, airborned and satellite images: preliminary results

Vine diseases have a strong impact on vineyards sustainability, which in turns leads to strong economic consequences. Among those diseases, Flavescence dorée spreads quickly and is incurable, which led in France to the setup of a mandatory pest control implying the systematic use of pesticides and the prospection and uprooting of every infected plants. Remote sensing could be a very powerful tool to optimize prospection as it allows to produce quickly accurate maps over large areas. Recent studies have shown that high spatial resolution (10cm/pixel) multispectral images acquired from UAVs allow to map Flavescence dorée in vineyards using leaves discolorations [e.g. Albetis et al., Remote Sensing, 2017].

Global warming effects on grape growing climate zones within the Rioja Appllation (DOCa Rioja) in north Spain

Aims: The aims of this work were (1) to assess the changes in some of the main bioclimatic indices used for climate viticultural zoning within the Rioja Appellation area in the north of Spain between 1950-2014 (60 years), and (2) to carry out a comprehensive sociological evaluation among grapegrowers and winemakers of this region, to better understand the impact of climate change on their activity, their degree of concern about it and the potential adaptation measures they would be willing to adopt to cope with it in future years.

Uvalino wine: chemical and sensory profile

The evaluation of different chemical compounds present in Uvalino wines was correlated with sensory analysis. The analysis showed a high content of polyphenolic compounds responsible for the organoleptic properties of wine, including color, astringency and bitterness.

Genomic characterization of extant genetic diversity in grapevine

Dating back to the early domestication period of grapevine (Vitis vinifera L.), expansion of human activity led to the creation of thousands of modern day genotypes that serve multiple purposes such as table and wine consumption. They also encompass a strong phenotypic diversity. Presently, viticulture faces various challenges, which include threatening climatic change scenarios and an historical track record of genetic erosion. Paritularly with regards to wine varieties, there is a pressing need to characterize the extant genetic diversity of modern varieties, as a means to delvier knowledge-based solutions under a rapidly evolving scenario, that may enable improved yields and profiles, resistance to pathogens, and increased resilience to climate change.