GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Ozone treatment: a solution to improve sanitary and physiological quality of vine plant

Ozone treatment: a solution to improve sanitary and physiological quality of vine plant

Abstract

Context and purpose of the study – The vineyard world is faced to a lot of fungal diseases. Grapevine Trunk Diseases (GTD) are some of the major. After exhibiting chronical foliar symptoms, grapevines can die by apoplexy within only few days. A range species of fungi was described to be associated with the apparition of early symptoms of GTD. It is well known that ozone dissolved into water is a powerful disinfectant with no remanence. The main goal of this study was to test the efficiency of this process on different fungal species associated with GTD in vitro and in planta conditions.

Material and methods – In vitro sanitary tests: Eighteen strains of two different species associated with GTD were selected (Phaeomoniella chlamydospora and Phaeoacremonium minimum). Ozone dissolved into water (4.5 g.m-3 according the Henry’s law) or autoclaved demineralized water (control) were applied on spore suspensions from strains. Suspensions were then plated on agar medium. Germinating spores were observed after five days. In vivo sanitary tests:Cuttings of Vitis vinifera Cabernet-Sauvignon clone 15 were drilled until the vascular channels. In each injury, plants received 20 µL of spore suspension (105 spores.mL-1) of P. minimum. Immediately after inoculation, infected wounded damages were treated with 20 µL of ozone dissolved into water (4.5 g.m-3 according the Henry’s law). The fungal development was evaluated 4, 6 and 9 weeks after inoculation by q-PCR.

Results – In vitro sanitary tests: Solution of ozone dissolved into water presented a complete sporicide effect. Indeed, no spore germinated in ozonated treatments whereas water treated controls normally developed. In vivo sanitary tests:The anti-fungal abilities of ozone treatment were secondly assessed by quantification of P. minimum DNA in woody tissues (via qPCR). Four and six weeks after inoculation, ozone treatment strongly reduced the source of inoculum present in the injury, resulting in more of 50% decrease of the number of P. minimum copies per ng of total. After nine weeks, the quantity of DNA is more important in ozone modality than in control modality. These results suggest that ozone treatment slowed down the fungal colonization via its primary sporicide effect in cutting-wounding conditions. Finally, consequences on the physiological aspect of the plant after ozone treatment should be discussed during the congress thanks to some news results.

DOI:

Publication date: September 26, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Ana ROMEO OLIVAN1,ǂ, Marielle PAGÈS1, 2,*,ǂ, Coralie BRETON1, Frédéric VIOLLEAU2,3 and Alban JACQUES1

1 PPGV, INP-PURPAN, F-31076 Toulouse, France
2 Plateforme TOAsT, Université de Toulouse, INP-PURPAN, Toulouse, France
3 Laboratoire de Chimie Agro-industrielle, LCA, Université de Toulouse, INRA, 31000 Toulouse, France
ǂ These authors contributed equally to this work

Contact the author

Keywords

grapevine, fungi, ozone, disinfection, growth

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Evaluation of state of vineyards and characterization of vineyard sites of the integrated area of Tokaj Kereskedőház ltd. in Tokaj region

The Tokaj Kereskedőház Ltd. is the only state owned winery in Hungary. The company is integrating grapes for wine production from 1100 hectares of vineyard, which consist of 3500 parcels with average size of 0,3 hectares, owned by about 500 families of the region. The vineyards are unevenly spread in total 27 village of Tokaj region.

Effect of nanofiltration on the chemical composition and wine quality

In Enology the conventional processes of filtration for clarification and stabilization are giving place to alternative membrane processes, including nanofiltration (NF). Furthermore, the increased alcohol content in wines recorded in recent years became an important issue for all the main wine producing countries. Among techniques available to the wine industry to reduce the ethanol content, NF is certainly one of the newest. This study is focused on the evaluation of NF influence on wine physical-chemical composition, including mineral content, which in accordance to our best knowledge is a novelty.

Use of minority grape varieties to mitigate climate change and achievement of balanced wines in Castilla y León (Spain)

Castilla y León is the third longest region in the European Union, having more than 85.000 vineyard hectares.

Varietal thiol precursors in Trebbiano di Lugana grape and must

Trebbiano di Lugana (TdL) is a white variety of Vitis vinifera mainly cultivated in an Italian area located south near Garda lake (Verona, north of Italy). This grape cultivar, also known as “Turbiana,” is used for the production of TdL wine with recognized Protected Designation of Origin whose volatile profile was recently determined [1]. The presence of varietal thiols in TdL, namely 3-mercaptohexan-1-ol and its acetate form, conferring the tropical and citrus notes, has been documented. Winemaking strategies were also described with the purpose of protecting and maintain these desired aromas [2]. To the best of our knowledge, the varietal thiol precursors (VTPs) were not previously determined in TdL grape and must. This study aimed to quantify VTPs in both grape during the ripening and must during the pressing. Volatile C6 compounds were also measured in the must fractions.

Aroma diversity of Amarone commercial wines

Amarone is an Italian red wine produced in the Valpolicella area, in north-eastern Italy. Due to its elaboration with withered grapes