GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Ozone treatment: a solution to improve sanitary and physiological quality of vine plant

Ozone treatment: a solution to improve sanitary and physiological quality of vine plant

Abstract

Context and purpose of the study – The vineyard world is faced to a lot of fungal diseases. Grapevine Trunk Diseases (GTD) are some of the major. After exhibiting chronical foliar symptoms, grapevines can die by apoplexy within only few days. A range species of fungi was described to be associated with the apparition of early symptoms of GTD. It is well known that ozone dissolved into water is a powerful disinfectant with no remanence. The main goal of this study was to test the efficiency of this process on different fungal species associated with GTD in vitro and in planta conditions.

Material and methods – In vitro sanitary tests: Eighteen strains of two different species associated with GTD were selected (Phaeomoniella chlamydospora and Phaeoacremonium minimum). Ozone dissolved into water (4.5 g.m-3 according the Henry’s law) or autoclaved demineralized water (control) were applied on spore suspensions from strains. Suspensions were then plated on agar medium. Germinating spores were observed after five days. In vivo sanitary tests:Cuttings of Vitis vinifera Cabernet-Sauvignon clone 15 were drilled until the vascular channels. In each injury, plants received 20 µL of spore suspension (105 spores.mL-1) of P. minimum. Immediately after inoculation, infected wounded damages were treated with 20 µL of ozone dissolved into water (4.5 g.m-3 according the Henry’s law). The fungal development was evaluated 4, 6 and 9 weeks after inoculation by q-PCR.

Results – In vitro sanitary tests: Solution of ozone dissolved into water presented a complete sporicide effect. Indeed, no spore germinated in ozonated treatments whereas water treated controls normally developed. In vivo sanitary tests:The anti-fungal abilities of ozone treatment were secondly assessed by quantification of P. minimum DNA in woody tissues (via qPCR). Four and six weeks after inoculation, ozone treatment strongly reduced the source of inoculum present in the injury, resulting in more of 50% decrease of the number of P. minimum copies per ng of total. After nine weeks, the quantity of DNA is more important in ozone modality than in control modality. These results suggest that ozone treatment slowed down the fungal colonization via its primary sporicide effect in cutting-wounding conditions. Finally, consequences on the physiological aspect of the plant after ozone treatment should be discussed during the congress thanks to some news results.

DOI:

Publication date: September 26, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Ana ROMEO OLIVAN1,ǂ, Marielle PAGÈS1, 2,*,ǂ, Coralie BRETON1, Frédéric VIOLLEAU2,3 and Alban JACQUES1

1 PPGV, INP-PURPAN, F-31076 Toulouse, France
2 Plateforme TOAsT, Université de Toulouse, INP-PURPAN, Toulouse, France
3 Laboratoire de Chimie Agro-industrielle, LCA, Université de Toulouse, INRA, 31000 Toulouse, France
ǂ These authors contributed equally to this work

Contact the author

Keywords

grapevine, fungi, ozone, disinfection, growth

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

What does the concept of natural wine evoke in the minds and senses of tasters? Effect of the level of expertise.

In this video recording of the IVES science meeting 2025, Jordi Ballester (Centre des sciences du goût et de l’alimentation, CNRS, INRAE, Institut Agro, Université Bourgogne-Franche-Comté, Dijon, France) and María-Pilar Sáenz-Navajas (Instituto de Ciencias de la Vid y el Vino (ICVV) (CSIC-UR-GR), La Rioja, Spain) speak about the concept of natural wine. This presentation is based on an original article accessible for free on OENO One.

NEUROPROTECTIVE AND ANTI-INFLAMMATORY PROPERTIES OF HYDROXYTYROSOL: A PROMISING BIOACTIVE COMPONENT OF WINE

Hydroxytyrosol (HT) is a phenolic compound present in olives, virgin olive oil and wine. HT has attracted great scientific interest due to its biological activities which have been related with the ortho-dihydroxy conformation in the aromatic ring. In white and red wines, HT has been detected at concentrations ranging from 0.28 to 9.6 mg/L and its occurrence has been closely related with yeast metabolism of aromatic amino acids by Ehrlich pathway during alcoholic fermentation. One of the most promising properties of this compound is the neuroprotective activity against pathological mechanisms related with neurode-generative disorders including Alzheimer’s and Parkinson’s disease.

NEW METHOD FOR THE QUANTIFICATION OF CONDENSED TANNINS AND OTHER WINE PHENOLIC COMPOUNDS USING THE AUTOMATED BIOSYSTEMS SPICA ANALIZER

Wine phenolic compounds are important secondary metabolites in enology due to their antioxidant and nutraceutical properties, and their role in the development of color, taste, and protection of wine from oxidation and spoilage. Tannins are valuable phenolic compounds that contribute significantly to these wine properties, especially in mouthfeel characteristics; however, tannin determination remains a significant challenge, with manual and time-consuming methods or complex methodologies. The purpose of this study is to propose a novel method for quantifying condensed tannins in finished wine products.

The science of fungi in grapevine: An essential new book covering all aspects of fungi in viticulture

Grapevine is one of the world’s most important cultivated plants, domesticated from the wild vine over 11,000 years ago. The fungi associated with it are doubtless as old as the plant itself. Despite their co-evolution with the vine over the centuries, it was only with the invention of the microscope in the seventeenth century that fungi started to be recognised.

Quantification of polysaccharides of variety Pomaces of the D.O.Ca Rioja

Pomace is one of the main residues generated by the wine industry and represents an environmental problem. Currently, there is a growing interest in the revaluation of these products because different bioactive compounds can be obtained from them, such as polyphenols, grape seed oils and polysaccharides. Red grape pomace can be an important source of polysaccharides, but they are currently little studied and even less with viable and environmental extraction processes (green extraction), such as flash extraction. The residual amount of the fraction rich in pectin (residual pulp) and component rich in hemicellulose in the pomace and the strength of association of the pectin with the cellulose-xyloglucan network depend on the degree of extractability of the polysaccharides in red winemaking and on the winemaking conditions.