GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Ozone treatment: a solution to improve sanitary and physiological quality of vine plant

Ozone treatment: a solution to improve sanitary and physiological quality of vine plant

Abstract

Context and purpose of the study – The vineyard world is faced to a lot of fungal diseases. Grapevine Trunk Diseases (GTD) are some of the major. After exhibiting chronical foliar symptoms, grapevines can die by apoplexy within only few days. A range species of fungi was described to be associated with the apparition of early symptoms of GTD. It is well known that ozone dissolved into water is a powerful disinfectant with no remanence. The main goal of this study was to test the efficiency of this process on different fungal species associated with GTD in vitro and in planta conditions.

Material and methods – In vitro sanitary tests: Eighteen strains of two different species associated with GTD were selected (Phaeomoniella chlamydospora and Phaeoacremonium minimum). Ozone dissolved into water (4.5 g.m-3 according the Henry’s law) or autoclaved demineralized water (control) were applied on spore suspensions from strains. Suspensions were then plated on agar medium. Germinating spores were observed after five days. In vivo sanitary tests:Cuttings of Vitis vinifera Cabernet-Sauvignon clone 15 were drilled until the vascular channels. In each injury, plants received 20 µL of spore suspension (105 spores.mL-1) of P. minimum. Immediately after inoculation, infected wounded damages were treated with 20 µL of ozone dissolved into water (4.5 g.m-3 according the Henry’s law). The fungal development was evaluated 4, 6 and 9 weeks after inoculation by q-PCR.

Results – In vitro sanitary tests: Solution of ozone dissolved into water presented a complete sporicide effect. Indeed, no spore germinated in ozonated treatments whereas water treated controls normally developed. In vivo sanitary tests:The anti-fungal abilities of ozone treatment were secondly assessed by quantification of P. minimum DNA in woody tissues (via qPCR). Four and six weeks after inoculation, ozone treatment strongly reduced the source of inoculum present in the injury, resulting in more of 50% decrease of the number of P. minimum copies per ng of total. After nine weeks, the quantity of DNA is more important in ozone modality than in control modality. These results suggest that ozone treatment slowed down the fungal colonization via its primary sporicide effect in cutting-wounding conditions. Finally, consequences on the physiological aspect of the plant after ozone treatment should be discussed during the congress thanks to some news results.

DOI:

Publication date: September 26, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Ana ROMEO OLIVAN1,ǂ, Marielle PAGÈS1, 2,*,ǂ, Coralie BRETON1, Frédéric VIOLLEAU2,3 and Alban JACQUES1

1 PPGV, INP-PURPAN, F-31076 Toulouse, France
2 Plateforme TOAsT, Université de Toulouse, INP-PURPAN, Toulouse, France
3 Laboratoire de Chimie Agro-industrielle, LCA, Université de Toulouse, INRA, 31000 Toulouse, France
ǂ These authors contributed equally to this work

Contact the author

Keywords

grapevine, fungi, ozone, disinfection, growth

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

isUP-AgrO European project – unlocking the potential for agricultural research on an EU outmost region: boosting ISOPlexis center

The isUP-AgrO project aims to enhance the capability of ISOPlexis – Centre of Sustainable Agriculture and Food Technology, a research unit from the University of Madeira, an outermost region of Portugal.

Photoselective shade films affect grapevine berry secondary metabolism and wine composition

Grapevine physiology and production are challenged by forecasted increases in temperature and water deficits. Within this scenario, photoselective overhead shade films are promising tools in warm viticulture areas to overcome climate change related factors. The aim of this study was to evaluate the vulnerability of ‘Cabernet Sauvignon’ grape berry to solar radiation overexposure and optimize shade film use for berry integrity. A randomized complete block design field study was conducted across two years (2020-2021) in Oakville, Napa Valley, CA, with four shade films (D1, D3, D4, D5) differing in the percent of radiation spectra transmitted and compared to an uncovered control (C0). Integrals for gas exchange parameters and mid-day stem water potential were unaffected by the shade films in 2020 and 2021. By harvest, berries from uncovered and shaded vines did not differ in their size or primary metabolism in either year. Despite precipitation exclusion during the dormant season in the shaded treatments, yield did not differ between them and the control in either season. In 2020, total skin anthocyanins (mg/g fresh mass) in the shaded treatments was greater than C0 during berry ripening and at harvest. Conversely, flavonol concentrations in 2020 were reduced in shaded vines compared to C0. The 2020 growing season highlighted the impact of heat degradation on flavonoids. Flavonoid concentrations in 2021 increased until harvest while flavonoid degradation was apparent from veraison to harvest in 2020 across shaded and control vines. Wine analyses highlighted the importance of light spectra to modify wine composition. Wine color intensity, tonality and anthocyanin values were enhanced in D4 whereas antioxidant properties were enhanced in C0 and D5 wines. Altogether, our results highlighted the need of new approaches in warm viticulture areas given the impact that composition of light has on berry and wine quality.

Adsorption of tetraconazole by organic residues and vineyard organically-amended soils 

Spain is the country with the largest wine-producing area in the EU and its productivity is largely controlled applying fungicides. However, residues of these compounds can move and contaminate surface and groundwater. The objective of this work was to evaluate the capacity of bioadsorbents from different origin to adsorb and immobilize tetraconazole by themselves or when applied as organic soil amendment, and to prevent soil and water contamination by this fungicide. The adsorption of tetraconazole by 3 organic residues: spent mushroom substrate (SMS), green compost (GC) and vine pruning sawdust (VP), as well as by vineyard soils unamended and amended individually with these residues at 1.5% (w/w) was evaluated using the batch equilibrium technique.

SHIRAZ FLAVONOID EXTRACTABILITY IMPACTED BY HIGH AND EXTREME HIGH TEMPERATURES

Climate change is leading to an increase in average temperature and in the severity and occurrence of heatwaves, and is already disrupting grapevine phenology. In Australia, with the evolution of the weather of grape growing regions that are already warm and hot, berry composition including flavonoids, for which biosynthesis depends on bunch microclimate, are expected to be impacted [1]. These compounds, such as anthocyanins and tannins, contribute substantially to grape and wine quality. The goal of this research was to determine how flavonoid extraction is impacted when bunches are exposed to high (>35 °C) and extreme high (>45 °C) temperatures during berry development and maturity.

1H-NMR-based Untargeted Metabolomics to assess the impact of soil type on the chemical composition of Mediterranean red wines

Untargeted metabolomics has proven to be an effective method to study the impact of the terroir on metabolic profile of wines. In this context, the aim of this study was to evaluate the effects of different soil types on the chemical composition of Mediterranean red wines, through 1H-NMR metabolomics combined with chemometrics.Grapes from Nero d’Avola L. red cultivar cultivated on four different soil types were separately vinified to obtain four different red wines.One milliliter of raw wine was analyzed by means of a Bruker Avance II 400 spectrometer operating at 400.15 MHz