OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analysis and composition of grapes, wines, wine spirits 9 Trials with machine harvested sauvignon blanc: the importance of grape transport time and temperature

Trials with machine harvested sauvignon blanc: the importance of grape transport time and temperature

Abstract

It is well known that free varietal thiols, in particular 3-mercaptohexanol (3MH) and 3-mercaptohexyl ace-tate (3MHA), are important constituents to the aroma of New Zealand Sauvignon blanc wines. This along with the popular practice of machine harvesting in New Zealand were the motivation for the following two pilot studies.
Firstly, it was examined if the presence of 3MH and 3MHA could be influenced by a change in transporta-tion time of machine harvested grapes. This came about as it was noticed that some Marlborough wineries process grapes incoming from multiple growing regions. Here, the thiol precursor contents, Glut-3MH and Cys-3MH, of 21 lab scale wines were examined after experiencing different simulated transportation times (0, 1.5, 3 and 4.5 h).

Results suggested that significant (p < 0.05) increases in the amount of Cys-3MH and Glut-3MH for some of the treatments associated to longer transportation times was possible. However, after fermentation while some of the experimental wines did not display any significant difference between the transportation times trialled, others displayed an opposite (downward) trend for the presence of 3MH and 3MHA across the increasing time points.

Secondly, as machine harvesting can occur throughout the day and night, of which atmospheric changes in temperature are anticipated, it was hypothesised that the skin contact taking place due to the nature of the machine harvesting can occur at different temperatures. For this study a holding period of 2h was chosen to represent the transport time of harvested grapes to a processing winery while the grape holding tempera-tures investigated were 6, 15 and 24 °C. Cys-3MH and Glut-3MH were quantified both before and after the different temperature treatments of the machine harvested grapes. ANOVA and Tukey HSD did not reveal any significant (p > 0.05) differences in thiol precursor levels before the 2h holding period. However, after this time a significant difference (p < 0.05) between the 6 and 15°C for both Cys-3MH and Glut-3MH was established. Following fermentation, the levels of 3MH and 3MHA were also quantified and revealed similar levels of these thiols between all of the experimental wines with no significant differences (p > 0.05) detec-ted between the holding temperatures investigated.

DOI:

Publication date: June 10, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Katie Parish-Virtue 1, Mandy Herbst-Johnstone 1, Flo Bouda 2, Rebecca Deed 1, and Bruno Fedrizzi 1, Claire Grose 3, Mandy Herbst-Johnstone 1, Damian Martin 3

1) Wine Science Programme, School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
2) Delegat Limited, 172 Hepburn Rd, Henderson, Auckland, New Zealand
3) Viticulture and Oenology Group, The New Zealand Institute for Plant and Food Research Ltd, Blenheim, New Zealand

Keywords

Transport time, Temperature, Machine harvesting, Thiols, Sauvignon blanc 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Application of satellite-derived vegetation indices for frost damage detection in grapevines

Wine grape production is increasingly vulnerable to freeze damage due to warming climates, milder winters, and unpredictable late spring frosts. Traditional methods for assessing frost damage in grapevines which combine fieldwork and meteorological data, are expensive, time-consuming, and labor-intensive. Remote sensing could offer a rapid, inexpensive way to detect frost damage at a regional scale. Remote sensing approaches were used to assess freeze damage in grapevines by evaluating satellite-derived vegetation indices (VIs) to understand the severity and spatial distribution of damage in several New York vineyards immediately after a frost event (May 17th-18th, 2023). PlanetScope 3m satellite images acquired before and after the freeze were used to map damage and measure changes in VIs for vineyards in the Finger Lakes region.

Climate ethnography and wine environmental futures

Globalisation and climate change have radically transformed world wine production upsetting the established order of wine ecologies. Ecological risks and the future of traditional agricultural systems are widely debated in anthropology, but very little is understood of the particular challenges posed by climate change to viticulture which is seen by many as the canary in the coalmine of global agriculture. Moreover, wine as a globalised embedded commodity provides a particularly telling example for the study of climate change having already attracted early scientific attention. Studies of climate change in viticulture have focused primarily on the production of systematic models of adaptation and vulnerability, while the human and cultural factors, which are key to adaptation and sustainable futures, are largely missing. Climate experts have been unanimous in recognising the urgent need for a better understanding of the complex dynamics that shape how climate change is experienced and responded to by human systems. Yet this call has not yet been addressed. Climate ethnography, coined by the anthropologist Susan Crate (2011), aims to bridge this growing disjuncture between climate science and everyday life through the exploration of the social meaning of climate change. It seeks to investigate the confrontation of its social salience in different locations and under different environmental guises (Goodman 2018: 340). By understanding how wine producers make sense of the world (and the environment) and act in it, it proposes to focus on the co-production of interdisciplinary knowledge by identifying and foreshadowing problems (Goodman 2018: 342; Goodman & Marshall 2018). It seeks to offer an original, transformative and contrasted perspective to climate change scenarios by investigating human agency -individual or collective- in all its social, political and cultural diversity. An anthropological approach founded on detailed ethnographies of wine production is ideally placed to address economic, social and cultural disruptions caused by the emergence of these new environmental challenges. Indeed, the community of experts in environmental change have recently called for research that will encompass the human dimension and for more broad-based, integrated through interdisciplinarity, useful knowledge (Castree & al 2014). My paper seeks to engage with climate ethnography and discuss what it brings to the study of wine environmental futures while exploring the limitations of the anthropological environmental approach.

Evaluation of the adaptation of Palomino Fino clones based on their physiological response

Genetic diversity within grapevine cultivars is a fundamental resource for varietal improvement and adaptation to cultivation requirements.

Environmental influence on grape phenolic and aromatic compounds in a Nebbiolo selection (Vitis vinifera L.)

Nebbiolo (Vitis vinifera L.) is one of the most important wine red cultivar of North-west Italy. A better understanding of the complex relations among grape aromatic and phenolic maturity and environmental factors may strongly contribute to the improvement of the quality of Nebbiolo wines.

Epigenetics: an innovative lever for grapevine breeding in times of climate changes

Climate change results in erratic weather conditions, which may lead for many crops including grapevine, to a reduced production and products of lower quality. Concerning grapevine, climate change results in shorter growing seasons and dates for budbreak, flowering and fruit maturity occur earlier in many regions. It also leads to an increase of various pests and diseases, as well as the vectors responsible for disease distribution.