OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analysis and composition of grapes, wines, wine spirits 9 Trials with machine harvested sauvignon blanc: the importance of grape transport time and temperature

Trials with machine harvested sauvignon blanc: the importance of grape transport time and temperature

Abstract

It is well known that free varietal thiols, in particular 3-mercaptohexanol (3MH) and 3-mercaptohexyl ace-tate (3MHA), are important constituents to the aroma of New Zealand Sauvignon blanc wines. This along with the popular practice of machine harvesting in New Zealand were the motivation for the following two pilot studies.
Firstly, it was examined if the presence of 3MH and 3MHA could be influenced by a change in transporta-tion time of machine harvested grapes. This came about as it was noticed that some Marlborough wineries process grapes incoming from multiple growing regions. Here, the thiol precursor contents, Glut-3MH and Cys-3MH, of 21 lab scale wines were examined after experiencing different simulated transportation times (0, 1.5, 3 and 4.5 h).

Results suggested that significant (p < 0.05) increases in the amount of Cys-3MH and Glut-3MH for some of the treatments associated to longer transportation times was possible. However, after fermentation while some of the experimental wines did not display any significant difference between the transportation times trialled, others displayed an opposite (downward) trend for the presence of 3MH and 3MHA across the increasing time points.

Secondly, as machine harvesting can occur throughout the day and night, of which atmospheric changes in temperature are anticipated, it was hypothesised that the skin contact taking place due to the nature of the machine harvesting can occur at different temperatures. For this study a holding period of 2h was chosen to represent the transport time of harvested grapes to a processing winery while the grape holding tempera-tures investigated were 6, 15 and 24 °C. Cys-3MH and Glut-3MH were quantified both before and after the different temperature treatments of the machine harvested grapes. ANOVA and Tukey HSD did not reveal any significant (p > 0.05) differences in thiol precursor levels before the 2h holding period. However, after this time a significant difference (p < 0.05) between the 6 and 15°C for both Cys-3MH and Glut-3MH was established. Following fermentation, the levels of 3MH and 3MHA were also quantified and revealed similar levels of these thiols between all of the experimental wines with no significant differences (p > 0.05) detec-ted between the holding temperatures investigated.

DOI:

Publication date: June 10, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Katie Parish-Virtue 1, Mandy Herbst-Johnstone 1, Flo Bouda 2, Rebecca Deed 1, and Bruno Fedrizzi 1, Claire Grose 3, Mandy Herbst-Johnstone 1, Damian Martin 3

1) Wine Science Programme, School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
2) Delegat Limited, 172 Hepburn Rd, Henderson, Auckland, New Zealand
3) Viticulture and Oenology Group, The New Zealand Institute for Plant and Food Research Ltd, Blenheim, New Zealand

Keywords

Transport time, Temperature, Machine harvesting, Thiols, Sauvignon blanc 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Fleurtai, Soreli and Tocai Friulano: perspectives for quality integration of wine together with protection of the DOCG Lison Classico appellation

In modern viticulture, sustainability must be considered not only into the winery, but in the vineyard as well, being that with the most attentive interventions in order to protect the environment. In this context, the new “fungi resistant” varieties represent a valid option for reducing the negative environmental impact of agrochemicals used in viticulture, including those ones used in organic farming (given the copper accumulation into soils). Several application studies have demonstrated the enological validity of many resistant varieties, both in price and as a blend. Also, under the production point of view, the feasibility and economical sustainability of the new resistant varieties was verified. The aim of this work was to deepen the knowledge on the organoleptic characteristics of wines obtained from the Fleurtai and Soreli varieties and to compare them with the wine obtained from Tocai Friulano, the mother variety in the area destined for the production of the Lison Classico DOCG appellation. The purpose of the work is then to verify the possibility of introducing resistant varieties into the DOCG while maintaining the wine name of the appellation linked to the territory.

Understanding graft union formation by using metabolomic and transcriptomic approaches during the first days after grafting in grapevine

Since the arrival of Phyloxera (Daktulosphaira vitifolia) in Europe at the end of the 19th century, grafting has become essential to cultivate Vitis vinifera. Today, grafting provides not only resistance to this aphid, but it used to adapt the cultivars according to the type of soil, environment, or grape production requirements by using a panel of rootstocks. As part of vineyard decline, it is often mentioned the importance of producing quality grafted grapevine to improve vineyard longevity, but, to our knowledge, no study has been able to demonstrate that grafting has a role in this context. However, some scion/rootstock combinations are considered as incompatible due to poor graft union formation and subsequently high plant mortality soon after grafting. In a context of climate change where the creation of new cultivars and rootstocks is at the centre of research, the ability of new cultivars to be grafted is therefore essential. The early identification of graft incompatibility could allow the selection of non-viable plants before planting and would have a beneficial impact on research and development in the nursery sector. For this reason, our studies have focused on the identification of metabolic and transcriptomic markers of poor grafting success during the first days/week after grafting; we have identified some correlations between some specialized metabolites, especially stilbenes, and grafting success, as well as an accumulation of some amino acids in the incompatible combination. The study of the metabolome and the transcriptome allowed us to understand and characterise the processes involved during graft union formation.

Nitrogen uptake, translocation and YAN in berries upon water deficit in grapevines with contrasting stomatal sensitivity

Nitrogen (N2) is critical in grape berries, especially in organic wine making. After intake, N2 follows various metabolic and allocation routes and, from veraison, partly reallocates into berries. Water deficit affects the N2 nutrition due to a poor diffusion in soil solution and vascular mobilisation. Also, affects photosynthesis and the energy needed for metabolism, whose extent would depend on the stomatal sensitivity of the plant. We have assessed the effect of a moderate water deficit from pea size, in 3 years old field grown potted plants of Chardonnay (CH) and Cabernet Sauvignon (CS), differing in stomatal sensitivity, on the N2 status of plant parts. Water deficit reduced photosynthesis, leaf area and fresh and dry plant mass along the season, but up to a higher extent in CS.

Economic comparison of viticultural cultivation systems: evaluating costs across integrated, organic, and biodynamic practices

The cost-effectiveness of a winery requires constant cost control in order to ensure competitiveness on the wine market.

The effect of ecological conditions on the germination of pollen, fecundation and yield of some grapevine cultivars in Skopje region, Republic of Macedonia

The ecological conditions (climatic factors and soil) during the whole year, and especially before flowering and during the time of flowering, have a great influence on the functional ability of pollen, the pollination, the fecundation and the yielding potential of the cultivars of grapevine.