OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analysis and composition of grapes, wines, wine spirits 9 Trials with machine harvested sauvignon blanc: the importance of grape transport time and temperature

Trials with machine harvested sauvignon blanc: the importance of grape transport time and temperature

Abstract

It is well known that free varietal thiols, in particular 3-mercaptohexanol (3MH) and 3-mercaptohexyl ace-tate (3MHA), are important constituents to the aroma of New Zealand Sauvignon blanc wines. This along with the popular practice of machine harvesting in New Zealand were the motivation for the following two pilot studies.
Firstly, it was examined if the presence of 3MH and 3MHA could be influenced by a change in transporta-tion time of machine harvested grapes. This came about as it was noticed that some Marlborough wineries process grapes incoming from multiple growing regions. Here, the thiol precursor contents, Glut-3MH and Cys-3MH, of 21 lab scale wines were examined after experiencing different simulated transportation times (0, 1.5, 3 and 4.5 h).

Results suggested that significant (p < 0.05) increases in the amount of Cys-3MH and Glut-3MH for some of the treatments associated to longer transportation times was possible. However, after fermentation while some of the experimental wines did not display any significant difference between the transportation times trialled, others displayed an opposite (downward) trend for the presence of 3MH and 3MHA across the increasing time points.

Secondly, as machine harvesting can occur throughout the day and night, of which atmospheric changes in temperature are anticipated, it was hypothesised that the skin contact taking place due to the nature of the machine harvesting can occur at different temperatures. For this study a holding period of 2h was chosen to represent the transport time of harvested grapes to a processing winery while the grape holding tempera-tures investigated were 6, 15 and 24 °C. Cys-3MH and Glut-3MH were quantified both before and after the different temperature treatments of the machine harvested grapes. ANOVA and Tukey HSD did not reveal any significant (p > 0.05) differences in thiol precursor levels before the 2h holding period. However, after this time a significant difference (p < 0.05) between the 6 and 15°C for both Cys-3MH and Glut-3MH was established. Following fermentation, the levels of 3MH and 3MHA were also quantified and revealed similar levels of these thiols between all of the experimental wines with no significant differences (p > 0.05) detec-ted between the holding temperatures investigated.

DOI:

Publication date: June 10, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Katie Parish-Virtue 1, Mandy Herbst-Johnstone 1, Flo Bouda 2, Rebecca Deed 1, and Bruno Fedrizzi 1, Claire Grose 3, Mandy Herbst-Johnstone 1, Damian Martin 3

1) Wine Science Programme, School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
2) Delegat Limited, 172 Hepburn Rd, Henderson, Auckland, New Zealand
3) Viticulture and Oenology Group, The New Zealand Institute for Plant and Food Research Ltd, Blenheim, New Zealand

Keywords

Transport time, Temperature, Machine harvesting, Thiols, Sauvignon blanc 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Genomic characterization of extant genetic diversity in grapevine

Dating back to the early domestication period of grapevine (Vitis vinifera L.), expansion of human activity led to the creation of thousands of modern day genotypes that serve multiple purposes such as table and wine consumption. They also encompass a strong phenotypic diversity. Presently, viticulture faces various challenges, which include threatening climatic change scenarios and an historical track record of genetic erosion. Paritularly with regards to wine varieties, there is a pressing need to characterize the extant genetic diversity of modern varieties, as a means to delvier knowledge-based solutions under a rapidly evolving scenario, that may enable improved yields and profiles, resistance to pathogens, and increased resilience to climate change.

Influence of the vintage, clone and rootstock on the chemical characteristics of Syrah tropical wines from Brazil

In the Northeast of Brazil, vines can produce twice a year, because annual average temperature is 26ºC, with high solar radiation and water availability for irrigation.

Contribution du potentiel glycosidique à l’arôme des vins de Grenache noir et Syrah en Vallée du Rhône

Grenache Noir and Syrah are the predominant grape varieties in the French Rhone valley vineyard, and produce wines with well differentiated aromatic notes. This study aimed at investigating the contribution of glycoconjugated precursors to these aromatic specificities, through their analytical profiles and the sensory influence of the odorant compounds they release during wine aging. The aglycones released by enzymatic hydrolysis of glycosidic extracts

Sensory evaluation of ‘Sauvignon blanc’ grapes by a trained panel

The study described the effect of sensory analysis on commercial ‘Sauvignon blanc’ vineyards within the Stellenbosch Wine of Origin District. The sensorial evaluation of the berries was able to give a description of each parcel type and relate it to the cultural practices.

Monitoring of grapevine stem potentials with an embedded microtensiometer

Vine water status is a crucial determinant of vine growth, productivity, fruit composition and terroir or wine style; therefore, regulating water stress is of great importance. Since vine water status depends on both soil moisture and aerial environment and is very temporally dynamic, direct measurement of vine water potential is highly preferable. Current methods only provide limited data. To regulate vine water status it is critical to monitor vine water status to be able to: (1) measure vine water status to predict the effect of water stress on the overall vineyard performance and fruit quality and optimize harvest management and wine-making (2) properly regulate the water status to impose for a desired fruit quality or style (3) determine if water management has reached the desired stress level.