OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analysis and composition of grapes, wines, wine spirits 9 Trials with machine harvested sauvignon blanc: the importance of grape transport time and temperature

Trials with machine harvested sauvignon blanc: the importance of grape transport time and temperature

Abstract

It is well known that free varietal thiols, in particular 3-mercaptohexanol (3MH) and 3-mercaptohexyl ace-tate (3MHA), are important constituents to the aroma of New Zealand Sauvignon blanc wines. This along with the popular practice of machine harvesting in New Zealand were the motivation for the following two pilot studies.
Firstly, it was examined if the presence of 3MH and 3MHA could be influenced by a change in transporta-tion time of machine harvested grapes. This came about as it was noticed that some Marlborough wineries process grapes incoming from multiple growing regions. Here, the thiol precursor contents, Glut-3MH and Cys-3MH, of 21 lab scale wines were examined after experiencing different simulated transportation times (0, 1.5, 3 and 4.5 h).

Results suggested that significant (p < 0.05) increases in the amount of Cys-3MH and Glut-3MH for some of the treatments associated to longer transportation times was possible. However, after fermentation while some of the experimental wines did not display any significant difference between the transportation times trialled, others displayed an opposite (downward) trend for the presence of 3MH and 3MHA across the increasing time points.

Secondly, as machine harvesting can occur throughout the day and night, of which atmospheric changes in temperature are anticipated, it was hypothesised that the skin contact taking place due to the nature of the machine harvesting can occur at different temperatures. For this study a holding period of 2h was chosen to represent the transport time of harvested grapes to a processing winery while the grape holding tempera-tures investigated were 6, 15 and 24 °C. Cys-3MH and Glut-3MH were quantified both before and after the different temperature treatments of the machine harvested grapes. ANOVA and Tukey HSD did not reveal any significant (p > 0.05) differences in thiol precursor levels before the 2h holding period. However, after this time a significant difference (p < 0.05) between the 6 and 15°C for both Cys-3MH and Glut-3MH was established. Following fermentation, the levels of 3MH and 3MHA were also quantified and revealed similar levels of these thiols between all of the experimental wines with no significant differences (p > 0.05) detec-ted between the holding temperatures investigated.

DOI:

Publication date: June 10, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Katie Parish-Virtue 1, Mandy Herbst-Johnstone 1, Flo Bouda 2, Rebecca Deed 1, and Bruno Fedrizzi 1, Claire Grose 3, Mandy Herbst-Johnstone 1, Damian Martin 3

1) Wine Science Programme, School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
2) Delegat Limited, 172 Hepburn Rd, Henderson, Auckland, New Zealand
3) Viticulture and Oenology Group, The New Zealand Institute for Plant and Food Research Ltd, Blenheim, New Zealand

Keywords

Transport time, Temperature, Machine harvesting, Thiols, Sauvignon blanc 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Application of an in vitro digestion model to study the bioaccessibility and the effect of the intestinal microbiota on the red wine proanthocyanidins 

Proanthocyanidins are important phenolic fraction for wine quality, contributing to astringency, bitterness and color. Their metabolism begins in the mouth and continues throughout the gastrointestinal tract; however, most of them are accumulated in the colon where are metabolized by the intestinal microbiota, giving rise to a whole series of phenolic acids that may have greater activity at physiological level than the precursors[1]. This study aimed to evaluate in vitro the bioaccessibility of proanthocyanidins in a red wine developed by Bodegas Pradorey, as well as to evaluate the potential effect of intestinal microbiota on polyphenols metabolism identifying and quantifying secondary metabolites.

LARGE-SCALE PHENOTYPIC SCREENING OF THE SPOILAGE YEAST BRETTANOMYCES BRUXELLENSIS: UNTANGLING PATTERNS OF ADAPTATION AND SELECTION, AND CONSEQUENCES FOR INNOVATIVE WINE TREATMENTS

Brettanomyces bruxellensis is considered as the main spoilage yeast in oenology. Its presence in red wine leads to off-flavour due to the production of volatile phenols such as 4-vinylphenol, 4-vinylguaiacol, 4-ethylphenol and 4-ethylguaiacol, whose aromatic notes are unpleasant (e.g. animal, leather, horse or pharmaceutical). Beside wine, B. bruxellensis is commonly isolated from beer, kombucha and bioethanol production, where its role can be described as negative or positive. Recent genomic studies unveiled the existence of various populations.

Shading grapevines with dynamic agrivoltaics address the challenge of early ripening and wine quality related with climate change

Context and purpose of the study. Climate change accelerates grapevine’s phenology, advancing harvests by 2–3 weeks over the past 40 years negatively affecting wine style due to a lack of acidity and too much alcohol.

Use of multispectral satellite for monitoring vine water status in mediterranean areas

The development of new generations of multispectral satellites such as Sentinel-2 opens possibilities as to vine water status assessment (Cohen et al., 2019). Based on a three years field campaign, a model of Stem Water Potential (SWP) estimation on vine using four satellite bands in Red, Red-Edge, NIR and SWIR domains was developed (Laroche-Pinel et al., 2021). The model relies on SWP field measures done using a pressure chamber (Scholander et al., 1965), which is a common, robust and precise method to assess vine water status (Acevedo-Opazo et al., 2008). The model was mainly developed from from SWP measures on Syrah N (Laroche Pinel E., 2021).

A large scale monitoring was organized in different vineyards in the Mediterranean region in 2021. 10 varieties amongst the most represented in this area were monitored (Cabernet sauvignon N, Chardonnay B, Cinsault N, Grenache N, Merlot N, Mourvèdre N, Sauvignon B, Syrah N, Vermentino B, Viognier B). The model was used to produce water status maps from Sentinel-2 images, starting from the beginning of June (fruit set) up to September (harvest). The average estimated SWP for each vine was compared to actual field SWP measures done by wine growers or technicians during usual monitoring of irrigation programs. The correlations between mean estimated SWP and mean measured SWP were at the same level than expected by the model. (Laroche Pinel, 2021) The general SWP kinetics were comparable. The estimated SWP would have led to same irrigation decisions concerning the date of first irrigation in comparison with measured SWP.

Acevedo-Opazo, C., Tisseyre, B., Ojeda, H., Ortega-Farias, S., Guillaume, S. (2008). Is it possible to assess the spatial variability of vine water status? OENO One, 42(4), 203.
Cohen, Y., Gogumalla, P., Bahat, I., Netzer, Y., Ben-Gal, A., Lenski, I., … Helman, D. (2019). Can time series of multispectral satellite images be used to estimate stem water potential in vineyards? In Precision agriculture ’19, The Netherlands: Wageningen Academic Publishers, pp. 445–451.
Laroche-Pinel, E., Duthoit, S., Albughdadi, M., Costard, A. D., Rousseau, J., Chéret, V., & Clenet, H. (2021). Towards vine water status monitoring on a large scale using sentinel-2 images. remote sensing, 13(9), 1837.
Laroche-Pinel,E. (2021). Suivi du statut hydrique de la vigne par télédétection hyper et multispectrale. Thèse INP Toulouse, France.
Scholander, P.F., Bradstreet, E.D., Hemmingsen, E.A., & Hammel, H.T. (1965). Sap pressure in vascular plants: Negative hydrostatic pressure can be measured in plants. Science, 148(3668), 339–346.

Oenococcus oeni clonal diversity in the carbonic maceration winemaking

This essay was aimed to describe the clonal diversity of Oenococcus oeni in the malolactic fermentation of the carbonic maceration (CM) winemaking. The free and the pressed liquids from CM were sampled and compared to the wine from a standard winemaking with previous destemming and crushing (DC) of grapes [1]. O. oeni strain typification was performed by PFGE as González-Arenzana et al. described (2014) [2]. Results showed that 13 genotypes, referred as to letters, were distinguished from the 49 isolated strains, meaning the genotype “a” the 27%, the “b” the 14%, the “c” the 12%, the “d and e” the 10 % each other, and the remaining ones less than the 8% each one.