OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analysis and composition of grapes, wines, wine spirits 9 The limonene-derived mint aroma compounds in red wines. Recent advances on analytical, chemical aspects and sensory aspects

The limonene-derived mint aroma compounds in red wines. Recent advances on analytical, chemical aspects and sensory aspects

Abstract

In recent years, the ageing bouquet of red Bordeaux wines has been partially unveiled by a chemical and sensory point of view1–3. Minty and fresh notes were found to play a key role in the definition of this complex concept, moreover the freshness dimension in fine aged red wines plays an important role in typicity judgement by wine professionals. Piperitone, a monoterpene ketone, was identified as a contributor to the positive mint aroma of aged red Bordeaux wines4,5. Further chemical and sensory investigations led to identification of a pool of mint aroma compounds (i.e. p-menthane lactones, carvone and menthol) potentially responsible for these positive olfactory notes.

The analyses of Merlot and Cabernet Sauvignon wines from various terroirs of the Bordeaux area suggested that there was a varietal influence on the mint aroma compound profiles5. Recently, a study in which we defined the terpenic profile of the two Italian grape varieties Corvina and Corvinone, confirmed that the concentration of the mint compounds is variety dependent, despite the terroir of origin of grapes.

These results revealed that Corvina wines were significantly richer in the pool of minty terpenes, in all the considered terroirs. Our recent results also revealed that these compounds already exist in the young wines, but at lower concentrations than in aged ones, thus suggesting that the mint compounds in wine reveal themselves during ageing. The mechanisms of this revelation are still unclear and are today studied. The results of the last years have opened the way to many questions that are still not answered and require further studies, in particular the role of the soil, viticultural practices, climate, rootstocks and varieties must be investigated. The determination of these compounds in wine is quite complex, as they are present at ng/L levels; however, they are sensory active also at trace levels, due to their low perception thresholds and synergistic sensory effect4.

The coupling of HS-SPME Arrow extraction and GC-MS-MS analysis has permitted to develop and validate an automated method of quantification. The development of this simple, sensitive and accurate analytical methods will allow to analyse large sets of wine, thus deepening the knowledge on the origin and expression of the minty and fresh aromas in wine, one of the most important piece of the puzzle of the ageing bouquet.

(1) Picard, M.; Tempere, S.; de Revel, G.; Marchand, S. Food Qual. Prefer. 2015, 42, 110–122.
(2) Picard, M.; Thibon, C.; Redon, P.; Darriet, P.; De Revel, G.; Marchand, S. J. Agric. Food Chem. 2015, 63 (40), 8879–8889.
(3) Slaghenaufi, D.; Perello, M.-C.; Marchand, S.; de Revel, G. Food Chem. 2016, 203, 41–48.
(4) Picard, M.; de Revel, G.; Marchand, S. Food Chem. 2017, 217, 294–302.
(5) Picard, M.; Tempere, S.; De Revel, G.; Marchand, S. J. Agric. Food Chem. 2016, 64 (40), 7576–7584.

DOI:

Publication date: June 10, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Maria Tiziana Lisanti 1, JustineLaboyrie 2, Céline Franc 2, Giovanni Luzzini 3, Davide Slaghenaufi 3, Maurizio Ugliano 3, Luigi Moio 1, Gilles de Revel 2, Stephanie Marchand 2

1) Universitàdegli Studi di Napoli Federico II, Sezione di Scienze della Vigna e del Vino, 83100 Avellino, Italy
2) Unité de recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, F33882 Villenave d’Ornon France
3) Wine chemistry laboratory Department of Biotechnology University of Verona Villa Ottolini-Lebrecht

Contact the author

Keywords

mint aromas, red wine, aging, terroir 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Arsenic in soil, leaves, grapes and wines

The presence of arsenic in food and beverages creates concern because of the toxicity of this element, classified as carcinogenic in humans. The arsenic concentration in soil, vine leaves and berries

Identification and formation kinetic study of phenolic compounds-volatile thiols adducts by enzymatic oxidation

By using HPLC-ESI-MS, 1H, 13C and 2D NMR, new addition products between catechin, epicatechin, caftaric acid and 3SH were characterized. Caftaric acid formed more rapidly adducts with 3SH than catechin and epicatechin in the absence of other nucleophiles.

Effect of stilbenes on malolactic fermentation performance of onoccocus oeni and lactiplantibacillus plantarum strains in wine production

Malolactic fermentation (MLF) is an important step in winemaking to improve wine quality through deacidification, increased microbial stability, and altered wine flavor. The phenolic composition of wine influences the growth and metabolism of lactic acid bacteria (lab) used for MLF.

Rapid measurement of phenolic quality as a useful tool for viticultural zoning

Un des principaux objectifs du zonage viticole est l’individuation des zones plus indiquées à la production de vins de haute qualité en relation aux cépages. Ceperrlant depuis beaucqup d’années, entre les paramètres de qualité du raisin, on n’a pas considéré les substances phénoliques par effet de l!l difficulté d’analyse en temps rapides.

BIOPROTECTION BY ADDING NON-SACCHAROMYCES YEASTS : ADVANCED RESEARCH ON THIS PROMISING ALTERNATIVE TO SO₂

Sulphur dioxide has been used for many years for its antimicrobial, antioxidant and antioxydasic properties in winemaking but nowadays, it is a source of controversy. Indeed, consumers are more attentive to the naturalness of their foods and beverages and the legislation is changing to reduce the total SO₂ levels allowed in wines. To limit and replace the doses of sulphur dioxide applied, winemakers can now use bioprotection consisting in live yeast addition as alternative,seems to be promising. This process, lightly used in from the food industry, allows to colonize the environment and limit the development or even eliminate undesirable microorganisms without altering the sensory properties of the product.