terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Genetic identification of 200-year-old Serbian grapevine herbarium

Genetic identification of 200-year-old Serbian grapevine herbarium

Abstract

Botanist Andreas Raphael Wolny collected a grapevine herbarium from 1812-1824 in Sremski Karlovci (wine region of Vojvodina, Serbia), which represents local cultivated grapevine diversity before the introduction of grape phylloxera in the region. The herbarium comprises over 100 samples organized into two subcollections based on berry colour (red and white varieties), totaling 47 different grape varieties. The objective of this study was to investigate the historical varietal assortment of Balkan and Pannonian winegrowing areas with long viticulture traditions. Obtaining DNA from more than 100 years old plant remains requires the use of ancient (or archive) DNA (aDNA) extraction procedures, adapted to aDNA conditions (typically degraded, damaged, and contaminated with environmental DNA). Here, we used a protocol for recovering ultrashort DNA molecules from herbarized leaves in facilities tailored for aDNA extraction. In 84 of 103 samples, DNA was successfully extracted and quantified. The presence of grapevine DNA in these extractions was verified in 31 randomly selected samples by partially amplifying a Vitis psaA chloroplast gene. Then, genotyping with 13 SSR was performed in a laboratory where grapevine DNA had never been amplified. The success of the genotyping analyses varied, from a third of the samples producing no positive results, to others working well, like modern DNA samples. The genetic profiles obtained were then compared to those stored in international databases (ICVV and VIVC). The samples were also genotyped for 48 SNPs and confirmed the SSR results. Up to 32 of the herbarized samples were successfully identified as 19 different varieties from the Western Balkans and neighboring regions, such as cv. ‘Kadarka Kek’, indicating their continuous cultivation for more than 200 years. The combined analysis of ancient and modern samples allows elucidating the historical evolution of the crop in Serbia.

Acknowledgements: Ministry of Agriculture, Forestry, and Water Management, Republic of Serbia; and European COST Action CA17111 INTEGRAPE.

DOI:

Publication date: October 3, 2023

Issue: ICGWS 2023

Type: Article

Authors

Royo, Carolina1,2*; Tello, Javier1; Rat, Milica3; Ferradás, Yolanda1,4; Nikolić, Miroslav5; Sabovljević, Aneta6; Todić, Slavica7; Ivanišević, Dragoslav8; Posth, Cosimo9; Weigel, Detlef10; Peña-Chocarro, Leonor2; Grbić, Miodrag1,6,11; Martínez-Zapater, José Miguel1; Tomanović, Željko6; Ibáñez, Javier1

1Instituto de Ciencias de la Vid y del Vino (ICVV, CSIC-CAR-UR), Departamento de Viticultura, Logroño, Spain
2Instituto de Historia, Departamento de Arqueología y Procesos Sociales, Madrid, Spain
3University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Novi Sad, Serbia
4Universidad de Santiago de Compostela, Santiago de Compostela, Spain
5University of Belgrade, Institute for Multidisciplinary Research, Belgrade, Serbia
6University of Belgrade, Faculty of Biology, Belgrade, Serbia
7University of Belgrade, Faculty of Agriculture, Department of Viticulture, Belgrade, Serbia
8University of Novi Sad, Faculty of Agriculture, Novi Sad, Serbia
9University of Tuebingen, Archaeo- and Palaeogenetics, Tuebingen, Germany
10Max-Plank Institute for Biology, Molecular Biology, Tuebingen, Germany
11University of Western Ontario, Department of Biology, London, Canada

Contact the author*

Keywords

ancient DNA, herbarium, genotyping, grapevine, microsatellite, SNP

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Preliminary results of water status and metabolite content of three new crossbreed winegrape genotypes

This study presents the preliminary results obtained in 2022, of the evaluation of three new crossbreed winegrape genotypes and their parental varieties, grown under controlled irrigation (60% ETc) and rainfed conditions in a wine-growing area with scarcity of water and high temperatures (Murcia, southeast Spain). The genotypes MC16 and MC80 were obtained from crosses between the varieties ‘Monastrell’ and ‘Cabernet Sauvignon’, and MS104 from crosses between ‘Monastrell’ and ‘Syrah’ [1]. The objective of this study was to analyse the physiological response and vegetative development of the 6 genotypes under the two irrigation conditions, and to study their effect on the content of soluble sugars and chlorophyll in the leaf.

Foliar application of urea improved the nitrogen composition of Chenin grapes

The nitrogen composition of the grapes directly affects the developments of alcoholic fermentation and influences the final aromatic composition of the wines. The aim of this study was to determine the effect and efficiency of foliar applications of urea on the nitrogen composition of grapes. This study was carried out during 2023 vintage and in the Chenin vineyard located in Estacion Experimental Mendoza (Argentina). Three urea concentrations 3, 6 and 9 Kg N/ha (C1, C2, and C3, respectively) and control (T) were applied in this vineyard at veraison.

Physico-chemical properties of vine pruning residues with potential as enological additive

Grapes are one of the world’s primary fruit crops, and pruning activities generate high amounts of annual wood wastes [1]. These pruning shoots contain valuable phenolic compounds and could have numerous potential applications [1,2]. Consequently, the aim of this work was to evaluate the physico-chemical properties of vine pruning residues with potential as enological additives. For this purpose, grapevine shoots from 12 varieties grown in Chile were collected during the winter of 2021.

INTEGRAPE guidelines and tools: an effort of COST Action CA17111

INTEGRAPE was a European interdisciplinary network for “data integration to maximize the power of omics for grapevine improvement” (CA17111, https://integrape.eu/), funded by the European COST Association from September 2018 to 2022. This Action successfully developed guidelines and tools for data management and promoted the best practices in grapevine omics studies with a holistic future vision of: “Imagine having all data on grapevine accessible in a single place”.

Influence of polysaccharide extracts from wine by-products on the volatile composition of sparkling white wines

In the production of sparkling wines, during the second fermentation, mannoproteins are released by yeast autolysis, which affect the quality of the wines. The effect of mannoproteins has been extensively studied, and may affect aroma and foam quality. However, there are no studies on the effect of other polysaccharides such as those from grapes. Considering the large production of waste from the wine industry, it was proposed to obtain polysaccharide-rich extracts from some of these by-products[1].