terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Genetic identification of 200-year-old Serbian grapevine herbarium

Genetic identification of 200-year-old Serbian grapevine herbarium

Abstract

Botanist Andreas Raphael Wolny collected a grapevine herbarium from 1812-1824 in Sremski Karlovci (wine region of Vojvodina, Serbia), which represents local cultivated grapevine diversity before the introduction of grape phylloxera in the region. The herbarium comprises over 100 samples organized into two subcollections based on berry colour (red and white varieties), totaling 47 different grape varieties. The objective of this study was to investigate the historical varietal assortment of Balkan and Pannonian winegrowing areas with long viticulture traditions. Obtaining DNA from more than 100 years old plant remains requires the use of ancient (or archive) DNA (aDNA) extraction procedures, adapted to aDNA conditions (typically degraded, damaged, and contaminated with environmental DNA). Here, we used a protocol for recovering ultrashort DNA molecules from herbarized leaves in facilities tailored for aDNA extraction. In 84 of 103 samples, DNA was successfully extracted and quantified. The presence of grapevine DNA in these extractions was verified in 31 randomly selected samples by partially amplifying a Vitis psaA chloroplast gene. Then, genotyping with 13 SSR was performed in a laboratory where grapevine DNA had never been amplified. The success of the genotyping analyses varied, from a third of the samples producing no positive results, to others working well, like modern DNA samples. The genetic profiles obtained were then compared to those stored in international databases (ICVV and VIVC). The samples were also genotyped for 48 SNPs and confirmed the SSR results. Up to 32 of the herbarized samples were successfully identified as 19 different varieties from the Western Balkans and neighboring regions, such as cv. ‘Kadarka Kek’, indicating their continuous cultivation for more than 200 years. The combined analysis of ancient and modern samples allows elucidating the historical evolution of the crop in Serbia.

Acknowledgements: Ministry of Agriculture, Forestry, and Water Management, Republic of Serbia; and European COST Action CA17111 INTEGRAPE.

DOI:

Publication date: October 3, 2023

Issue: ICGWS 2023

Type: Article

Authors

Royo, Carolina1,2*; Tello, Javier1; Rat, Milica3; Ferradás, Yolanda1,4; Nikolić, Miroslav5; Sabovljević, Aneta6; Todić, Slavica7; Ivanišević, Dragoslav8; Posth, Cosimo9; Weigel, Detlef10; Peña-Chocarro, Leonor2; Grbić, Miodrag1,6,11; Martínez-Zapater, José Miguel1; Tomanović, Željko6; Ibáñez, Javier1

1Instituto de Ciencias de la Vid y del Vino (ICVV, CSIC-CAR-UR), Departamento de Viticultura, Logroño, Spain
2Instituto de Historia, Departamento de Arqueología y Procesos Sociales, Madrid, Spain
3University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Novi Sad, Serbia
4Universidad de Santiago de Compostela, Santiago de Compostela, Spain
5University of Belgrade, Institute for Multidisciplinary Research, Belgrade, Serbia
6University of Belgrade, Faculty of Biology, Belgrade, Serbia
7University of Belgrade, Faculty of Agriculture, Department of Viticulture, Belgrade, Serbia
8University of Novi Sad, Faculty of Agriculture, Novi Sad, Serbia
9University of Tuebingen, Archaeo- and Palaeogenetics, Tuebingen, Germany
10Max-Plank Institute for Biology, Molecular Biology, Tuebingen, Germany
11University of Western Ontario, Department of Biology, London, Canada

Contact the author*

Keywords

ancient DNA, herbarium, genotyping, grapevine, microsatellite, SNP

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Induction of polyphenols in seedlings of Vitis vinifera cv. Monastrell by the application of elicitors

Contamination problems arising from the use of pesticides in viticulture have raised concerns. One of the alternatives to reduce contamination is the use of elicitors, molecules capable of stimulating the natural defences of plants, promoting the production of phenolic compounds (PC) that offer protection against biotic and abiotic stress. Previous studies on Cabernet-Sauvignon seedlings demonstrated that foliar application of elicitors methyl jasmonate (MeJ) and benzothiadiazole (BTH) increased proteins and PC involved in grapevine defence mechanisms. However, no trials had been conducted on Monastrell seedlings, a major winegrape variety in Spain.

Application of an in vitro digestion model to study the bioaccessibility and the effect of the intestinal microbiota on the red wine proanthocyanidins 

Proanthocyanidins are important phenolic fraction for wine quality, contributing to astringency, bitterness and color. Their metabolism begins in the mouth and continues throughout the gastrointestinal tract; however, most of them are accumulated in the colon where are metabolized by the intestinal microbiota, giving rise to a whole series of phenolic acids that may have greater activity at physiological level than the precursors[1]. This study aimed to evaluate in vitro the bioaccessibility of proanthocyanidins in a red wine developed by Bodegas Pradorey, as well as to evaluate the potential effect of intestinal microbiota on polyphenols metabolism identifying and quantifying secondary metabolites.

Effect of rising atmospheric CO2 levels on grapevine yield and composition by the middle of the 21st century: what can we learn from the VineyardFACE?

Atmospheric CO2 levels have been rising continuously since the industrial revolution, affecting crop physiology, yield and quality of harvest products, and grapevine is no exception [1]. Most of previously reported studies used potted plants in controlled environments, and explored grapevine response to relatively high CO2 levels, 700 ppm or more. The vineyardFACE, established in Geisenheim in 2012, uses a free air carbon dioxide enrichment (FACE) system to simulate a moderate (ambient +20%) increase in atmospheric CO2 in a vineyard planted with cvs. Cabernet-Sauvignon and Riesling grafted on rootstock 161-49 Couderc and SO4, respectively.

Effect of soil particle size on vine water status, leaf ABA content and berry quality in Nebbiolo grapes

The root and shoot abscisic acid (ABA) accumulation in response to water deficit and its relation with stomatal conductance is longtime known in grapevine. ABA-dependent and ABA-independent signalling response to osmotic stress coexist in sessile plants. In grapevine, the signaling role of ABA in response to water stress conditions and its influence on berry quality is critical to manage grapevine acclimation to climate change.

Entomopathogenic nematodes application for controlling Lobesia botrana in grapevine and their impact on grapevine quality 

Entomopathogenic nematodes (EPN) are well-known biological control agents combined with specific adjuvants that now allow their use against aerial pests. Lobesia botrana (Lepidoptera: Tortricidae) is one of the major harmful pests detected in worldwide vineyards. Previous studies demonstrated that the EPNs Steinernema feltiae and S. carpocapsae could control L. botrana. The hypothesis was that the best combination of EPN-adjuvant/timing (season/temperatures) will support the use of EPN in the vineyard against L. botrana with no impact on the grape performance.