terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Indicators of Sustainable Vineyard Soil Management: Metrics for Assessing Environmental Impacts

Indicators of Sustainable Vineyard Soil Management: Metrics for Assessing Environmental Impacts

Abstract

The vital role of soils in supporting life on our planet cannot be overstated. Soils provide numerous ecosystem services and functions, including biomass production, carbon sequestration, physical support, biological habitat, and genetic reserve, among others. Understanding the characteristics and sensitivity of soils in a specific terroir, along with effective soil management practices, is crucial for the sustainable management of natural resources.

To address this issue, we aimed to develop a concise set of indicators to assess soil quality in vineyards. By creating a protocol or guide for winemakers, we can enable them to conduct a basic evaluation of their soil’s quality.

To do so, we have mined the literature, from over 600.000 articles on the subject of “soil health” we selected the 100 most relevant and recent documents. Then, we have identified a set of 12 descriptors belonging to 4 categories that can be easily determined by the farmers to assess the quality of their soils using protocols that will be soon available online. The first category includes descriptors of the status of the soils and the 3 remaining categories contain descriptors related to physical, chemical, and biological quality. To have a more precise description of the soil quality, we have identified a set of 6 additional descriptors requiring more complex equipment and aimed at the scientific community. Amongst these indicators, certain microbes play crucial roles in enhancing plant adaptability to various abiotic and biotic stresses and can serve as valuable indicators of soil health. The microbial community of a field with different plowing practices has been assessed through metagenomic techniques in a maize rotation involving cover crops and this approach will be implemented, over the course of this project, in vineyards of varying age, soil management (till versus no-till) and grape color.

Acknowledgements: Plan Complementario de I+D+i de Agroalimentación AGROALNEXT dentro del Plan de Recuperación, Transformación y Resiliencia financiado por la Unión Europea – Next Generation EU.

DOI:

Publication date: October 3, 2023

Issue: ICGWS 2023

Type: Article

Authors

Emily Silva Araujo1, Jérôme Grimplet2,3*, Vicente González-García1,3, Inés Zugasti López1 , Pedro Marco-Montori2,3, María José Rubio-Cabetas2,3, Sergio Sánchez2,3, Sergi García- Barreda 2,3, Ramón Isla1, Farida Dechmi1,3 and José Manuel Mirás-Avalos1

1 Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Departamento de Ciencia Vegetal, Gobierno de Aragón, Avda. Montañana 930, 50059 Zaragoza, Spain
2 Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente, Gobierno de Aragón, Avda. Montañana 930, 50059 Zaragoza, Spain
3 Instituto Agroalimentario de Aragón—IA2 (CITA-Universidad de Zaragoza), Calle Miguel Servet 177, 50013 Zaragoza, Spain

Contact the author*

Keywords

sustainable management, soil quality indicators, microbiome

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

The use of plasma activated water in barrel disinfection: impact on oak wood composition

The use of barrels is a practice that improves the quality of wines. The porous structure of wood favors the accumulation of microorganisms that can deteriorate the quality of wines so that barrel cleaning and sanitizing treatments are essential. The burning of sulphur discs has been the most common practice in winemaking because ots biocide effect. Nevertheless, its effectiveness is still insufficient and it is harmful for human health.

Exploring the genetic diversity of leaf flavonoids content in a set of Iberian grapevine cultivars: preliminary results

The use of grapevine genetic diversity is a way to mitigate the negative impacts of climate change on viticulture systems. Leaf epidermal flavonoids (including flavonols and anthocyanins) are involved in plant defense mechanisms against environmental stresses, like high temperatures or excessive solar radiation [1,2]. Among other factors, they modulate light absorption, which reduces photoinhibition processes in photosynthetic tissues [1]. Therefore, the identification of grapevine cultivars with an increased content on leaf epidermal flavonoids arises as a potential avenue to improve grapevine tolerance to some detrimental environmental stresses.

Distribution and sensory impact of new oak wood-derived compounds in wines

Despite the numerous research studies carried out in recent years, the study of wine aroma remains of great interest due to its complexity. Wine maturation in oak barrels is described as an important step in the production of quality wines. In fact, oak wood develops several aromatic nuances through its toasting which can be released into the wine. A great deal of work has been performed in order to identify the wood-derived volatile compounds that contribute to wine aroma (e.g., whisky-lactone, maltol, eugenol, guaiacol, vanillin).

Evaluation of interception traps for capture of Xylotrechus arvicola (Coleoptera: Cerambycidae) in vineyards varieties from Protected Denomination of Origin León

Xylotrechus arvicola (Coleoptera: Cerambycidae) is a pest in vineyards (Vitis vinifera) in the main Spain wine-producing regions with Protected Denomination of Origin (PDO). The action of the larvae, associated to the spreading of wood fungi, causes damage especially in important varieties of V. vinifera. X. arvicola females lay eggs concentrated in cracks or under the rhytidome in the wood vines, which allows the emerging larvae to get into the wood and make galleries inside the plant being then necessary to prune intensively or to pull up the bored plants (1). The objective of the study was to evaluate captures of X. arvicola insects in five varieties of V. vinifera in PDO León.

Mycorrhizal symbiosis modulates flavonoid and amino acid profiles in grapes of Tempranillo and Cabernet Sauvignon 

Arbuscular mycorrhizal fungi (AMF) symbiosis is probably the most widespread beneficial interaction between plants and microorganisms. AMF has been widely reported to promote grapevine growth, water and nutrient uptake as well as both biotic and abiotic stress tolerance[1]. However, the impact of AMF on grape composition has been less studied. The aim of this work was to evaluate the effects of the association between two commercial grapevine cultivars (Tempranillo and Cabernet Sauvignon grafted onto 110 rootstock) and AMF on the anthocyanin, flavonol and amino acid concentrations and profiles of grapes.