terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Indicators of Sustainable Vineyard Soil Management: Metrics for Assessing Environmental Impacts

Indicators of Sustainable Vineyard Soil Management: Metrics for Assessing Environmental Impacts

Abstract

The vital role of soils in supporting life on our planet cannot be overstated. Soils provide numerous ecosystem services and functions, including biomass production, carbon sequestration, physical support, biological habitat, and genetic reserve, among others. Understanding the characteristics and sensitivity of soils in a specific terroir, along with effective soil management practices, is crucial for the sustainable management of natural resources.

To address this issue, we aimed to develop a concise set of indicators to assess soil quality in vineyards. By creating a protocol or guide for winemakers, we can enable them to conduct a basic evaluation of their soil’s quality.

To do so, we have mined the literature, from over 600.000 articles on the subject of “soil health” we selected the 100 most relevant and recent documents. Then, we have identified a set of 12 descriptors belonging to 4 categories that can be easily determined by the farmers to assess the quality of their soils using protocols that will be soon available online. The first category includes descriptors of the status of the soils and the 3 remaining categories contain descriptors related to physical, chemical, and biological quality. To have a more precise description of the soil quality, we have identified a set of 6 additional descriptors requiring more complex equipment and aimed at the scientific community. Amongst these indicators, certain microbes play crucial roles in enhancing plant adaptability to various abiotic and biotic stresses and can serve as valuable indicators of soil health. The microbial community of a field with different plowing practices has been assessed through metagenomic techniques in a maize rotation involving cover crops and this approach will be implemented, over the course of this project, in vineyards of varying age, soil management (till versus no-till) and grape color.

Acknowledgements: Plan Complementario de I+D+i de Agroalimentación AGROALNEXT dentro del Plan de Recuperación, Transformación y Resiliencia financiado por la Unión Europea – Next Generation EU.

DOI:

Publication date: October 3, 2023

Issue: ICGWS 2023

Type: Article

Authors

Emily Silva Araujo1, Jérôme Grimplet2,3*, Vicente González-García1,3, Inés Zugasti López1 , Pedro Marco-Montori2,3, María José Rubio-Cabetas2,3, Sergio Sánchez2,3, Sergi García- Barreda 2,3, Ramón Isla1, Farida Dechmi1,3 and José Manuel Mirás-Avalos1

1 Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Departamento de Ciencia Vegetal, Gobierno de Aragón, Avda. Montañana 930, 50059 Zaragoza, Spain
2 Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente, Gobierno de Aragón, Avda. Montañana 930, 50059 Zaragoza, Spain
3 Instituto Agroalimentario de Aragón—IA2 (CITA-Universidad de Zaragoza), Calle Miguel Servet 177, 50013 Zaragoza, Spain

Contact the author*

Keywords

sustainable management, soil quality indicators, microbiome

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Atypical aging and hydric stress: insights on an exceptionally dry year

Atypical aging (ATA) is a white wine fault characterized by the appearance of notes of wet rag, acacia blossoms and naphthalene, along with the vanishing of varietal aromas. 2-aminoacetophenone (AAP) – a degradation compound of indole-3-acetic acid (IAA) – is regarded as the main sensorial and chemical marker responsible for this defect. About the origin of ATA, a stress reaction occurring in the vineyard has been looked as the leading cause of this defect. Agronomic, climatic and pedological factors are the main triggers and among them, drought stress seems to play a crucial role.[1]

Anthocyanin content and composition of Merlot grapes under temperature and late pruning conditions 

One of the main aspects of Climate Change is the increase of temperatures during summer and grape maturity period. Physiological processes are influenced by these high temperatures and result in grapes with higher sugar concentration, less acidity and less anthocyanin content among other quality changes. One strategy to deal with the climate change effects is the implementation of late winter pruning to alter the effect of high temperatures during key periods by delays in maturity time.

The generation of suspended cell wall material may limit the effect of ultrasound in some varieties

The disruptive effect exerted by high-power ultrasound (US) on plant cell walls, natural barriers to the diffusion of compounds of interest during the maceration of red wines, is established as the reason behind the chromatic improvement that its treatment causes. However, sometimes this improvement is not observed, especially with short maceration times. The presence of a high quantity of suspended cell wall material, which formation is favored by the sonication, could be the cause of this lack of positive results since this cell wall material has a high affinity for phenolic compounds.

Metabolomic profiling of botrytized grape berries: unravelling the dynamic chemical transformations during noble rot

Botrytis cinerea, a fungal pathogen commonly known as grey mold, which under specific climatic conditions can develop into a desirable form known as noble rot. In this process the fungus penetrates the grape skin, allowing water evaporation and concentration of sugars and flavors, while profoundly affects the metabolite composition of grapes, leading to the production of unique and desirable compounds in the resulting wines. The result is a unique and complex wine with a luscious sweetness, heightened aromatics, and a distinct character.

Rootstock regulation of scion phenotypes: the relationship between rootstock parentage and petiole mineral concentration

Rootstocks not only provide tolerance to Phylloxera, but also ensure the supply of water and mineral nutrients to the whole plant. Rootstocks are an important way of adapting to environmental conditions while conserving the typical features of scion varieties. We can exploit the large diversity of rootstocks used worldwide to aid this adaptation. The aim of this study was to characterise rootstock regulation of scion mineral status and its relation with scion development.