terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Indicators of Sustainable Vineyard Soil Management: Metrics for Assessing Environmental Impacts

Indicators of Sustainable Vineyard Soil Management: Metrics for Assessing Environmental Impacts

Abstract

The vital role of soils in supporting life on our planet cannot be overstated. Soils provide numerous ecosystem services and functions, including biomass production, carbon sequestration, physical support, biological habitat, and genetic reserve, among others. Understanding the characteristics and sensitivity of soils in a specific terroir, along with effective soil management practices, is crucial for the sustainable management of natural resources.

To address this issue, we aimed to develop a concise set of indicators to assess soil quality in vineyards. By creating a protocol or guide for winemakers, we can enable them to conduct a basic evaluation of their soil’s quality.

To do so, we have mined the literature, from over 600.000 articles on the subject of “soil health” we selected the 100 most relevant and recent documents. Then, we have identified a set of 12 descriptors belonging to 4 categories that can be easily determined by the farmers to assess the quality of their soils using protocols that will be soon available online. The first category includes descriptors of the status of the soils and the 3 remaining categories contain descriptors related to physical, chemical, and biological quality. To have a more precise description of the soil quality, we have identified a set of 6 additional descriptors requiring more complex equipment and aimed at the scientific community. Amongst these indicators, certain microbes play crucial roles in enhancing plant adaptability to various abiotic and biotic stresses and can serve as valuable indicators of soil health. The microbial community of a field with different plowing practices has been assessed through metagenomic techniques in a maize rotation involving cover crops and this approach will be implemented, over the course of this project, in vineyards of varying age, soil management (till versus no-till) and grape color.

Acknowledgements: Plan Complementario de I+D+i de Agroalimentación AGROALNEXT dentro del Plan de Recuperación, Transformación y Resiliencia financiado por la Unión Europea – Next Generation EU.

DOI:

Publication date: October 3, 2023

Issue: ICGWS 2023

Type: Article

Authors

Emily Silva Araujo1, Jérôme Grimplet2,3*, Vicente González-García1,3, Inés Zugasti López1 , Pedro Marco-Montori2,3, María José Rubio-Cabetas2,3, Sergio Sánchez2,3, Sergi García- Barreda 2,3, Ramón Isla1, Farida Dechmi1,3 and José Manuel Mirás-Avalos1

1 Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Departamento de Ciencia Vegetal, Gobierno de Aragón, Avda. Montañana 930, 50059 Zaragoza, Spain
2 Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente, Gobierno de Aragón, Avda. Montañana 930, 50059 Zaragoza, Spain
3 Instituto Agroalimentario de Aragón—IA2 (CITA-Universidad de Zaragoza), Calle Miguel Servet 177, 50013 Zaragoza, Spain

Contact the author*

Keywords

sustainable management, soil quality indicators, microbiome

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

What to do to solve the riddle of vine rootstock induced drought tolerance

Climate change will increase the frequency of water deficit situation in some European regions, by the increase of the evapotranspiration and the reduction of rainfalls during the growing cycle. This requires finding ways of adaptation, including the use of plant material which is more tolerant to drought. In addition to the varieties used as scions that result in the typicality of wines, rootstocks constitute a relevant way of adaptation to more stressful environmental conditions.

Combined abiotic-biotic plant stresses on the roots of grapevine

In the 19th century, devastating outbreaks of phylloxera (Daktulosphaira vitifoliae Fitch), almost brought European viticulture to its knees. Phylloxera does not only take energy in form of sugars from the vine, but also affects the up- and down- regulations of genes, acts as a carbon sink and reprograms the physiology of the grapevines, including nutrient uptake and the defense system [1]. A key trait of rootstocks is the ability to perform well under high lime conditions as about 30 % of the land surface has calcareous soil. Iron deficiency not only causes the well-known problems of lime-induced chlorosis and stunted growth, but also affects the entire plant metabolism.

Prediction of aromatic attributes of red wines from its colour properties 

Wine perception is a multisensory experience that makes use of the sight, smell, and taste senses. When wine is sensorially assessed, the stimulus received generates multiple signals that tasters convert into organoleptic descriptors. Colour is commonly the first attribute evaluated during wine tasting. Moreover, the colour properties provide the taster with a priori information of the wine’s aroma. This preconceived perception is later confirmed or denied during the aroma evaluation.

Late pruning, an alternative for rainfed vine varieties facing new climatic conditions

In Chile there is a dry farming area known as a traditional wine region, where varieties brought by the Spanish conquerors still persist. These varieties, in general, are cultivated under traditional systems, with low use of technical and economic resources, and low profitability for their grapes and wines. In this region, as in other wine grape growing areas, climatic conditions have changed significantly in recent decades. In particular, the occurrence of spring frosts, when bud break has already begun, have generated significant losses for these growers.

Applicability of grape native yeasts to enhance regional wine typicity

The universalization in wine production has been restricting the imprint of terroir in regional wines, resulting in loss of typicity. Microbes are the main driving force in wine production, conducting fermentation and originating a myriad of metabolites that underly wine aroma. Grape berries harbor an ecological niche composed of filamentous fungi, yeasts and bacteria, which are influenced by the ripening stage, cultivar and region. The research project GrapeMicrobiota gathers a consortium from University of Zaragoza, University of Minho and University of Tours and aims at the isolation of native yeast strains from berries of the wine region Douro, UNESCO World Heritage, towards the production of wines that stand out in the market for their authenticity and for reflecting their region of origin in their aroma.