OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analysis and composition of grapes, wines, wine spirits 9 Beyond colors of rosé wines: impact of origin and winemaking technology on their color, polyphenol and thiol compositions

Beyond colors of rosé wines: impact of origin and winemaking technology on their color, polyphenol and thiol compositions

Abstract

Rosé wine consumption is rapidly increasing with its market share in France that has grown from 11 % to 32 % in less than 20 years. A recent trend is also to produce rosé wines with lighter colors. Varieties, terroir and technology certainly have an influence on rosé wine colors. We used different analytical techniques (colorimetry, UPLC-MS) and data management strategies (molecular modelling and multivariate discrimination analysis) to investigate the relationship between natural and human factors on the final composition of rosés wine. We showed that some polyphenols can be key markers of the origin for 60 commercial wines from the Bordeaux, Languedoc and Provence regions. We also demonstrated that PVPP treatment reduces the color of rosé wines by specifically adsorbing some classes of polyphenols and pigments like coumaroylated anthocyanins. This specific adsorption phenoma was explained by molecular modelling calculations of interactions between anthocyanins and PVPP. Finally we showed for the first time that the thiol aromatic indexes of rosé wines can be increased by PVPP treatment up to 200 % compared to the control.

DOI:

Publication date: June 11, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Cédric Saucier, Mélodie Gil, Christelle Reynes, Fabian Avila, Philippe Louazil, Guillaume Cazals, Véronique Cheynier, Christelle Enjalabal, Nerea Iturmendi, Leonardo Santos, Robert Sabatier, Virginie Moine

SPO, Univ Montpellier, INRA, Montpellier SupAgro, Montpellier, France.
Univ Montpellier, IGF, CNRS INSERM, Montpellier, France.
Laboratory of Asymmetric Synthesis, Institute of Chemistry and Natural Resources, Universidad de Talca, Talca, Chile.
Biolaffort, 126 Quai de la Souys, 33100 Bordeaux, France.
Univ Montpellier, IBMM, Montpellier, France.

Contact the author

Keywords

Rosé wine, polyphenomics, thiols, PVPP fining 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Effect of soil type on Sauvignon blanc and Cabernet-Sauvignon wine style at different localities in South Africa

The wine producing regions of South Africa are characterized by climatic diversity. The Coastal Region has a Mediterranean climate, with a mean annual rainfall of c.

Metschnikowia pulcherrima: A valuable microbial bioresource from wine for smart agrifood

The yeast Metschnikowia pulcherrima is a microorganism of great biotechnological interest, both for improving winemaking processes and for other applications outside the wine supply chain.

Advancing wine authentication: non-invasive near-infrared spectroscopy and machine learning for vintage and quality traits assessment

Wine fraud, encompassing counterfeiting and adulteration, poses a significant threat to the wine industry, resulting in annual losses totalling billions of dollars.

Contaminations croisées avec les produits phytosanitaires dans les vins bio. Sources potentielles et mesures de prévention.

Organic wines, although resulting from a production method based on the non-use of synthetic phytosanitary products, are not always free of residues. These residues can result from cross-contamination during production in the field or in the cellar, during the production or aging of the wine. In recent years, with the improvement of analysis techniques, a molecule, phosphonic acid, the main metabolite of fosetyl-al (banned in organic farming) is regularly quantified in organic wines and its origin is not clearly identified.

Predicting provenance and grapevine cultivar implementing machine learning on vineyard soil microbiome data: implications in grapevine breeding

The plant rhizosphere microbial communities are an essential component of plant microbiota, which is crucial for sustaining the production of healthy crops. The main drivers of the composition of such communities are the growing environment and the planted genotype. Recent viticulture studies focus on understanding the effects of these factors on soil microbial composition since microbial biodiversity is an important determinant of plant phenotype, and of wine’s organoleptic properties. Microbial biodiversity of different wine regions, for instance, is an important determinant of wine terroir.