OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analysis and composition of grapes, wines, wine spirits 9 Beyond colors of rosé wines: impact of origin and winemaking technology on their color, polyphenol and thiol compositions

Beyond colors of rosé wines: impact of origin and winemaking technology on their color, polyphenol and thiol compositions

Abstract

Rosé wine consumption is rapidly increasing with its market share in France that has grown from 11 % to 32 % in less than 20 years. A recent trend is also to produce rosé wines with lighter colors. Varieties, terroir and technology certainly have an influence on rosé wine colors. We used different analytical techniques (colorimetry, UPLC-MS) and data management strategies (molecular modelling and multivariate discrimination analysis) to investigate the relationship between natural and human factors on the final composition of rosés wine. We showed that some polyphenols can be key markers of the origin for 60 commercial wines from the Bordeaux, Languedoc and Provence regions. We also demonstrated that PVPP treatment reduces the color of rosé wines by specifically adsorbing some classes of polyphenols and pigments like coumaroylated anthocyanins. This specific adsorption phenoma was explained by molecular modelling calculations of interactions between anthocyanins and PVPP. Finally we showed for the first time that the thiol aromatic indexes of rosé wines can be increased by PVPP treatment up to 200 % compared to the control.

DOI:

Publication date: June 11, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Cédric Saucier, Mélodie Gil, Christelle Reynes, Fabian Avila, Philippe Louazil, Guillaume Cazals, Véronique Cheynier, Christelle Enjalabal, Nerea Iturmendi, Leonardo Santos, Robert Sabatier, Virginie Moine

SPO, Univ Montpellier, INRA, Montpellier SupAgro, Montpellier, France.
Univ Montpellier, IGF, CNRS INSERM, Montpellier, France.
Laboratory of Asymmetric Synthesis, Institute of Chemistry and Natural Resources, Universidad de Talca, Talca, Chile.
Biolaffort, 126 Quai de la Souys, 33100 Bordeaux, France.
Univ Montpellier, IBMM, Montpellier, France.

Contact the author

Keywords

Rosé wine, polyphenomics, thiols, PVPP fining 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Characterization of the thiol aromatic potential of a new resistant grape variety: Floreal

Aims: Due to climate change and the desire to decrease enological inputs (organic farming), the vineyard has to be modified and the selection of new resistant grape varieties as an alternative is researched intensively today. From January 2018, four new grape varieties that are resistant against mildew and odium have been added to the official

OPTIMIZATION, VALIDATION AND APPLICATION OF THE EPR SPIN-TRAPPING TECHNIQUE TO THE DETECTION OF FREE RADICALS IN CHARDONNAY WINES

The aging potential of Burgundy chardonnay wines is considered as quality indicator. However, some of them exhibit higher oxidative sensitivity and premature oxidative aging symptoms, which are potentially induced by no-enzymatic oxidation such as Fenton-type reaction (Danilewicz, 2003). This chemical mechanism involves the action of transition metal, native phenolic compounds and oxygen which promote the generation of highly reactive oxygen species (ROS) such as hydroxyl radicals (OH) or 1-hydroxyethyl radicals (1-HER) from oxidation of ethanol. Such mechanism is involved in the radical oxidation occurring during bottle aging. According to Elias et al.,(2009a), the 1-HER is the most abundant radical in forced oxidation treated wines. Consequently, understanding its evolution kinetic in dry white wines is of great importance.

Biodiversity in the vineyard agroecosystem: exploring systemic approaches

Biodiversity conservation and restoration are essential for guarantee the provision of ecosystem services associated to vineyard agroecosystem such as climate regulation trough carbon sequestration and control of pests and diseases. Most of published research dealing with the complexity of the vineyard agroecosystems emphasizes the necessity of innovative approaches, including the integration of information at different temporal and spatial scales and development of systemic analysis based on modelling. A biodiversity survey was conducted in the Franciacorta wine-growing area (Lombardy, Italy), one of the most important Italian wine-growing regions for sparkling wine production, considering a portion of the territory of 112 ha. The area was divided into several Environmental Units (EUs), defined as a whole vineyard or portion of vineyard homogenous in terms of four agronomic characteristics: planting year, planting density, cultivar, and training system. In each EU a set of compartments was identified and characterised by specific variables. The compartments are meteorology, morphology (altitude, slope, aspect, row orientation, and solar irradiance), ecological infrastructures and management. The landscape surrounding EU was also characterised in terms of land-use in a buffer zone of 500 m. For each component a specific methodology was identified and applied. Different statistical approaches were used to evaluate the method to integrate the information related to different compartments within the EU and related to the buffer zone. These approaches were also preliminarily evaluated for their ability to describe the contribution of biodiversity and landscape components to ecosystem services. This methodological exploration provides useful indication for the development of a fully systemic approach to structural and functional biodiversity in vineyard agroecosystems, contributing to promote a multifunctional perspective for the all wine-growing sector.

Assessment of environmental sustainability of wine growing activity in France

To meet the demand of assessment tool of vine growers and their advisers we adapted to the vine production the INDIGO® method to developed initially for arable farming.

Relationships between vine isohydricity and changes of fruit growth and metabolism during water deficit

The frequency of water deficits is increasing in many grape-growing regions due to climate change.