OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analysis and composition of grapes, wines, wine spirits 9 Beyond colors of rosé wines: impact of origin and winemaking technology on their color, polyphenol and thiol compositions

Beyond colors of rosé wines: impact of origin and winemaking technology on their color, polyphenol and thiol compositions

Abstract

Rosé wine consumption is rapidly increasing with its market share in France that has grown from 11 % to 32 % in less than 20 years. A recent trend is also to produce rosé wines with lighter colors. Varieties, terroir and technology certainly have an influence on rosé wine colors. We used different analytical techniques (colorimetry, UPLC-MS) and data management strategies (molecular modelling and multivariate discrimination analysis) to investigate the relationship between natural and human factors on the final composition of rosés wine. We showed that some polyphenols can be key markers of the origin for 60 commercial wines from the Bordeaux, Languedoc and Provence regions. We also demonstrated that PVPP treatment reduces the color of rosé wines by specifically adsorbing some classes of polyphenols and pigments like coumaroylated anthocyanins. This specific adsorption phenoma was explained by molecular modelling calculations of interactions between anthocyanins and PVPP. Finally we showed for the first time that the thiol aromatic indexes of rosé wines can be increased by PVPP treatment up to 200 % compared to the control.

DOI:

Publication date: June 11, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Cédric Saucier, Mélodie Gil, Christelle Reynes, Fabian Avila, Philippe Louazil, Guillaume Cazals, Véronique Cheynier, Christelle Enjalabal, Nerea Iturmendi, Leonardo Santos, Robert Sabatier, Virginie Moine

SPO, Univ Montpellier, INRA, Montpellier SupAgro, Montpellier, France.
Univ Montpellier, IGF, CNRS INSERM, Montpellier, France.
Laboratory of Asymmetric Synthesis, Institute of Chemistry and Natural Resources, Universidad de Talca, Talca, Chile.
Biolaffort, 126 Quai de la Souys, 33100 Bordeaux, France.
Univ Montpellier, IBMM, Montpellier, France.

Contact the author

Keywords

Rosé wine, polyphenomics, thiols, PVPP fining 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Pure wine vs natural wine

S’il n’existe pas de réglementation officielle, la démarche des vins naturels prône un retour aux pratiques dites ancestrales préconisant notamment un mode d’élaboration des vins utilisant le moins d’intrants possible. Le seul autorisé reste l’anhydride sulfureux (SO2) à des doses quatre à cinq fois moins importantes que pour les vins dits conventionnels. Ce désir de renouer avec

The use of plasma activated water in barrel disinfection: impact on oak wood composition

The use of barrels is a practice that improves the quality of wines. The porous structure of wood favors the accumulation of microorganisms that can deteriorate the quality of wines so that barrel cleaning and sanitizing treatments are essential. The burning of sulphur discs has been the most common practice in winemaking because ots biocide effect. Nevertheless, its effectiveness is still insufficient and it is harmful for human health.

Applications of a novel molecular phenology scale to align the stages of grape berry development

Phenology scales widely adopted by viticulturists (i.e., BBCH or modified E-L systems) are classification tools that describe seasonal and precisely recognized stages of fruit growth and development based on specific descriptors such as visual/physical traits or easy-to-measure compositional parameters.

Fermentation Products, Degradation Parameters, (Poly)Phenols And Potassium Content In Tokaji Aszú Winemaking

The historic Tokaj Wine Region in northeast Hungary, a UNESCO World Heritage region since 2002, encompasses 5,500 ha vineyards. Produced from “noble rot” grapes, Tokaji Aszú is known as one of the oldest botrytized wines all over the world. Special microclimatic conditions (due to Bodrog and Tisza rivers, Indian summer), soil conditions (clay, loess on volcanic bedrock) and grape

Non-Saccharomyces yeast nitrogen consumption and metabolite production during wine fermentation

Over the last decade, the use of non-Saccharomyces yeasts in the winemaking process has been re-assessed and accepted by winemakers. These yeasts can be used to achieve specific objectives such as lowering the ethanol content, preventing wine spoilage and increasing the production of specific aroma compounds. Since these species are unable to complete alcoholic fermentation, strategies of co- and sequential inoculation of non-Saccharomyces and Saccharomyces cerevisiae have been developed. However, when mixed starter cultures are used, several parameters (e.g. strain yeast, inoculation timing and nutrient competitions) impact the growth of the individual yeasts, the fermentation kinetics and the metabolites/aroma production. In particular, competition for nitrogen compounds could have a major impact, potentially leading to sluggish fermentation when the yeast assimilable nitrogen (YAN) availability is low. Moreover, many aroma compounds produced by the yeasts are directly produced and influenced by nitrogen metabolism such as higher alcohols, acetate esters and ethyl esters which participate in the organoleptic complexity of wine.