terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Reduction of the height of the canopy in fruit set and in pea size: vegetative, productive and maturation effects, in cv. Verdejo

Reduction of the height of the canopy in fruit set and in pea size: vegetative, productive and maturation effects, in cv. Verdejo

Abstract

Global warming is accelerating the technological ripening of the grape, with a loss of acidity, which requires that vineyard management can delay ripening to avoid it. The source-sink relation is essential for grape ripening, since it affects the distribution of photosynthates and substances derived from plant metabolism. A work is proposed to know the response of the vineyard to the drastic reduction of the foliar surface by trim down the shoots in cv. Verdejo. In 2020, in Valladolid, the height reduction of the canopy was studied according to treatments: T (control), without reduction; Rj (reduction in fruit set -j-), trim to half the length of all shoots; Rk1 (reduction in pea size -k-), similar to Rj; Rk2 (reduction + lateral leaflessness, in -k-). Trim was made by hand respecting a height of trellis vegetation of 60 cm. The experiment was designed in 4 random blocks, with an elemental plot of 12 control vines, in a bilateral Royat cordon. The reduction of vegetation did not significantly affect grape production, producing a decrease between 8% and 4%, but significantly reduced pruning wood, between 25% and 16%, due to a decrease in shoot weight. In the campaign after the reduction, 2021, neither the grape production nor the vegetative development were affected. The composition of the grape in 2020 was hardly affected by the reduction, since the harvest only had to be delayed up to five days to reach the same concentration of sugars as in the control vines.

The pH, total acidity and malic acid of grapes did not show notable changes, while tartaric acid was significantly favored and potassium increased slightly. Probably, the relatively low production level did not prevent a fairly normal development of the grape ripening, despite the drastic reduction in the leaves-clusters ratio.

Acknowledgements: PID2019-105039RR-C42 project (MCIN/AEI) and Junta de Castilla y León

DOI:

Publication date: October 3, 2023

Issue: ICGWS 2023

Type: Article

Authors

J. Yuste1, D. Martínez-Porro1

1Instituto Tecnológico Agrario de Castilla y León, 47071 Valladolid (Spain)

Contact the author*

Keywords

acidity, grapes, shoot trimming, sugars, vineyard

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Identification of loci associated with specialised metabolites in Vitis vinifera

Secondary (or specialised) metabolites such as terpenes and phenolic compounds are produced by plants for various roles which include defence against pathogens and herbivores, protection against abiotic stress, and plant signalling. Additionally, these metabolites influence grapevine quality traits such as colour, aroma, taste, and nutritional value. However, the biosynthesis of these metabolites is often complex and controlled by multiple genes which in grapevine are predominantly uncharacterised.

Ecophysiological characterisation of terroir effects on Vitis vinifera L. Chardonnay and pinot noir in south african cool climate regions

Terroir encompasses environmental (climate, geology, soil and topography), genetic (cultivar and clone) and human factors (oenological and viticultural practices). Climate change brings about shifts in the suitability of a region for the growth of specific grapevine cultivars. This study focused on climatic and fruit parameters (berry size, weight, pH, total acidity (TA) and phenolics) to characterise the terroir effect in Vitis vinifera L. cultivars Chardonnay and Pinot Noir vineyards in the Cape South Coast region (Walker Bay and Elgin).

Combined abiotic-biotic plant stresses on the roots of grapevine

In the 19th century, devastating outbreaks of phylloxera (Daktulosphaira vitifoliae Fitch), almost brought European viticulture to its knees. Phylloxera does not only take energy in form of sugars from the vine, but also affects the up- and down- regulations of genes, acts as a carbon sink and reprograms the physiology of the grapevines, including nutrient uptake and the defense system [1]. A key trait of rootstocks is the ability to perform well under high lime conditions as about 30 % of the land surface has calcareous soil. Iron deficiency not only causes the well-known problems of lime-induced chlorosis and stunted growth, but also affects the entire plant metabolism.

Development of a new method for detecting acetic acid bacteria in wine

The presence of acetic acid bacteria in wine can lead to the appearance of acetic acid at concentrations above the perception threshold, causing the wine rejection by the consumer. During the winemaking process, avoiding the presence of acetic acid bacteria is very difficult, as there is always a residual population accompanying the wine[1], and the problem arises with the significant development of these microorganisms that metabolizes large amounts of acetic acid.
The concern of wineries to control the presence of acetic acid bacteria in wines during their conservation is due to the absence of simple and effective analyses that allow the detection of these microorganisms in the initial stages.

Moderate wine consumption – part of a balanced diet or a health risk?

Consumption of wine/alcoholic beverages remains a topic of great uncertainty and controversy worldwide. The term “no safe level” dominates the media communication and policy ever since population studies in 2018 [1,2] were published, which denied the existence of a J-curve and suggested that ANY consumption of an alcoholic beverage is harmful to health. The scientific evidence accumulated during the past decades about the health benefits of moderate wine consumption, were questioned and drinking guidelines considered to be too loose.