terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Reduction of the height of the canopy in fruit set and in pea size: vegetative, productive and maturation effects, in cv. Verdejo

Reduction of the height of the canopy in fruit set and in pea size: vegetative, productive and maturation effects, in cv. Verdejo

Abstract

Global warming is accelerating the technological ripening of the grape, with a loss of acidity, which requires that vineyard management can delay ripening to avoid it. The source-sink relation is essential for grape ripening, since it affects the distribution of photosynthates and substances derived from plant metabolism. A work is proposed to know the response of the vineyard to the drastic reduction of the foliar surface by trim down the shoots in cv. Verdejo. In 2020, in Valladolid, the height reduction of the canopy was studied according to treatments: T (control), without reduction; Rj (reduction in fruit set -j-), trim to half the length of all shoots; Rk1 (reduction in pea size -k-), similar to Rj; Rk2 (reduction + lateral leaflessness, in -k-). Trim was made by hand respecting a height of trellis vegetation of 60 cm. The experiment was designed in 4 random blocks, with an elemental plot of 12 control vines, in a bilateral Royat cordon. The reduction of vegetation did not significantly affect grape production, producing a decrease between 8% and 4%, but significantly reduced pruning wood, between 25% and 16%, due to a decrease in shoot weight. In the campaign after the reduction, 2021, neither the grape production nor the vegetative development were affected. The composition of the grape in 2020 was hardly affected by the reduction, since the harvest only had to be delayed up to five days to reach the same concentration of sugars as in the control vines.

The pH, total acidity and malic acid of grapes did not show notable changes, while tartaric acid was significantly favored and potassium increased slightly. Probably, the relatively low production level did not prevent a fairly normal development of the grape ripening, despite the drastic reduction in the leaves-clusters ratio.

Acknowledgements: PID2019-105039RR-C42 project (MCIN/AEI) and Junta de Castilla y León

DOI:

Publication date: October 3, 2023

Issue: ICGWS 2023

Type: Article

Authors

J. Yuste1, D. Martínez-Porro1

1Instituto Tecnológico Agrario de Castilla y León, 47071 Valladolid (Spain)

Contact the author*

Keywords

acidity, grapes, shoot trimming, sugars, vineyard

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

The characterization of Vitis vinifera L cv. Cabernet sauvignon: the contribution of Ecklonia maxima seaweed extract

Biostimulants and biofertilizers are considered environmentally friendly and cost-effective alternatives to synthetic fertilizers, plant growth regulators and crop improvement products. Broadly, plant biostimulants are expected to improve nutrient use efficiency, tolerance to abiotic stress, quality traits and availability of nutrients in the soil or rhizosphere. Currently, seaweed extracts account for more than 33% of the total plant biostimulant market. Within this category, Ascophyllum nodosum (AN), is the most widely studied and applied in biostimulant formulations.

White grape must processed by UHPH as an alternative to SO2 addition: Effect on the phenolic composition in three varieties

The quantity and distribution of polyphenols in musts play a fundamental role in the white winemaking. This is because these substances are exposed to oxidation reactions, which are catalysed by the polyphenol oxidase (PPO), leading to a decrease in the quality of the wines produced. PPO is inactivated by SO2, but currently, due to the restrictions of the legislation, other methodologies are being investigated. Ultra-High Pressure Homogenization (UHPH) is a non-thermal physic technology that exerts an ultrahigh pressure pumping (>200 MPa) of a fluid through a valve in a continuous system.

Photoprotective extracts from agri-food waste to prevent the effect of light in rosé wines 

Light is responsible for adverse reactions in wine including the formation of unpleasant flavors, loss of vitamins or photodegradation of anthocyanins. Among them, the riboflavin degradation leads to the formation of undesirable volatile compounds, known as light-struck taste. These photo-chemical reactions could be avoided by simply using opaque packaging. However, most rosé wines are kept in transparent bottles due to different commercial reasons. Some agri-food waste extracts have been studied for their photoprotective action which turn to be highly correlated with phenolic content [1].

Discovering the process of noble rot: fungal ecology of grape berries during the noble rot transformation in different vineyards of the Tokaj wine region

Botrytis cinerea, a well-known grapevine pathogen, has more than 1200 host plants causing grey rot in grapevine berries. However, it can also result in a desirable phenomenon called noble rot under specific microclimate conditions. An extraordinary demonstration of this natural process can be observed in the creation of aszú wines within Hungary’s Tokaj wine region. Beside B. cinerea other fungi and yeasts are involved in the secondary metabolic development of the grape berry which contributes to the sensory and analytical characterization of noble rot wines.

Metabolomic profiling of botrytized grape berries: unravelling the dynamic chemical transformations during noble rot

Botrytis cinerea, a fungal pathogen commonly known as grey mold, which under specific climatic conditions can develop into a desirable form known as noble rot. In this process the fungus penetrates the grape skin, allowing water evaporation and concentration of sugars and flavors, while profoundly affects the metabolite composition of grapes, leading to the production of unique and desirable compounds in the resulting wines. The result is a unique and complex wine with a luscious sweetness, heightened aromatics, and a distinct character.