terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Reduction of the height of the canopy in fruit set and in pea size: vegetative, productive and maturation effects, in cv. Verdejo

Reduction of the height of the canopy in fruit set and in pea size: vegetative, productive and maturation effects, in cv. Verdejo

Abstract

Global warming is accelerating the technological ripening of the grape, with a loss of acidity, which requires that vineyard management can delay ripening to avoid it. The source-sink relation is essential for grape ripening, since it affects the distribution of photosynthates and substances derived from plant metabolism. A work is proposed to know the response of the vineyard to the drastic reduction of the foliar surface by trim down the shoots in cv. Verdejo. In 2020, in Valladolid, the height reduction of the canopy was studied according to treatments: T (control), without reduction; Rj (reduction in fruit set -j-), trim to half the length of all shoots; Rk1 (reduction in pea size -k-), similar to Rj; Rk2 (reduction + lateral leaflessness, in -k-). Trim was made by hand respecting a height of trellis vegetation of 60 cm. The experiment was designed in 4 random blocks, with an elemental plot of 12 control vines, in a bilateral Royat cordon. The reduction of vegetation did not significantly affect grape production, producing a decrease between 8% and 4%, but significantly reduced pruning wood, between 25% and 16%, due to a decrease in shoot weight. In the campaign after the reduction, 2021, neither the grape production nor the vegetative development were affected. The composition of the grape in 2020 was hardly affected by the reduction, since the harvest only had to be delayed up to five days to reach the same concentration of sugars as in the control vines.

The pH, total acidity and malic acid of grapes did not show notable changes, while tartaric acid was significantly favored and potassium increased slightly. Probably, the relatively low production level did not prevent a fairly normal development of the grape ripening, despite the drastic reduction in the leaves-clusters ratio.

Acknowledgements: PID2019-105039RR-C42 project (MCIN/AEI) and Junta de Castilla y León

DOI:

Publication date: October 3, 2023

Issue: ICGWS 2023

Type: Article

Authors

J. Yuste1, D. Martínez-Porro1

1Instituto Tecnológico Agrario de Castilla y León, 47071 Valladolid (Spain)

Contact the author*

Keywords

acidity, grapes, shoot trimming, sugars, vineyard

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Biotic and abiotic factors affecting physiological aspects underlying vegetative vigour in two commercial grapevine varieties

Grapevine vigour, defined as the propensity to assimilate, store and/or use non-structural sugars for allowing fast growth of shoots and producing large canopies[1], is crucial to optimize vineyard management. Recently, a model has been proposed for predicting the vigor of young grapevines through the measurement of the vegetative growth and physiological parameters, such as water status and gas exchange[2]. Our objectives were (1) to explore the influence of the association of two grapevine varieties (Tempranillo and Cabernet Sauvignon, grafted onto R110 rootstocks) with arbuscular mycorrhizal fungi (AMF) on the vegetative vigour of young plants; and (2) to assess the effect of environmental factors linked to climate change on the vegetative vigour of Cabernet Sauvignon.

Late winter pruning induces a maturity delay under temperature-increased conditions in cv. Merlot from Chile

Chile is considered vulnerable to climate change; and these phenomena affect several mechanisms in the grape physiology and quality. The global temperature increase affects sugar contents, organic acids, and phenolic compounds in grapes, producing an imbalance maturity. In this sense, an alternative to reduce the impact is to perform pruning after vine budburst, known as “Late Pruning” (LP).

Biodiversity and biocontrol ability of Trichoderma natural populations in soil vineyards from Castilla y León region (Spain)

Trichoderma is a microorganism present in many agricultural soils and some of its species could be used as natural biological control agents. In this work, the presence of natural populations of Trichoderma was estimated in soil vineyard and its biocontrol capacity against Phaeoacremonium minimum, one of the main agent causals of grapevine trunk diseases instead of using pesticides. Moreover, physicochemical variables in soil such as pH, organic matter and nutrients were evaluated to determine a possible correlation to natural populations of Trichoderma.

Ultra-High Pressure Homogenization (UHPH): a technique that allows the reduction of SO2 in winemaking

Ultra-High Pressure Homogenization (UHPH) is an innovative, efficient and non-thermal technology that can be applied at different stages in winemaking in order to reduce or avoid the use of sulphites. During 2022 vintage, a batch of Xarel·lo must was processed by UHPH at 300 MPa with an inlet temperature (Ti) of 4 ºC. In order to verify the influence of the UHPH treatment in wine characteristics, alcoholic fermentations with this must (UHPH) were carried out and compared with a control batch (without SO2 addition (C)) and a sulphited batch, in which 60 mg/L of total SO2 (SO2) were added.

Polyphenol content of cork granulates at different steps of the manufacturing process of microagglomerated stoppers treated with supercritical CO2 used for wine bottling

The wine closure industry is mainly divided into three categories: screw caps, synthetic closures, and cork-based closures. Among this latter, microagglomerated cork stoppers treated with supercritical CO2 are now widely used, especially to avoid cork taint contaminations[1]. They are designed with cork granules obtained from cork offcuts of the punching process during the natural cork stoppers production. A previous study[2] showed that these stoppers released fewer polyphenols in 12 % (v/v) hydroalcoholic solution than natural cork stoppers.