terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effect of foliar application of urea and nano-urea on the cell wall of Monastrell grape skins

Effect of foliar application of urea and nano-urea on the cell wall of Monastrell grape skins

Abstract

The foliar application of urea has been shown to be able to satisfy the specific nutritional needs of the vine as well as to increase the nitrogen composition of the must. On the other hand, the use of nanotechnology could be of great interest in viticulture as it would help to slow down the release of urea and protect it against possible degradation. Several studies indicate that cell wall synthesis and remodeling are affected by nitrogen availability.

The study was carried out over three years (2019, 2020 and 2021), the effect on the main components of the cell wall of Monastrell grape skins was compared to control after foliar treatments with urea and nano-urea. The treatments, in triplicate, were manually applied with a spray dispenser.

The proportion of isolated cell wall was increased in both treatments every year. This rise would indicate a thickening of the cell walls. Proteins were enhanced in 2019 and 2021 in grapes from the two treatments, whereas in 2020 they were not modified. Phenolic compounds were not affected in 2019, decreasing in the nano-urea treatment in 2020 and in the urea treatment in 2021. Cellulose was diminished in 2019 in the nano-urea treatment and in both treatments in 2021, but was not affected in 2020. Hemicellulose was increased for both treatments in both 2019 and 2021, but only for urea in 2020. Finally, uronic acids were lower compared to control for both treatments in 2019, but raise in the two subsequent years.

In conclusion, the cell wall was modified by both treatments, which may have implications on its rigidity and therefore on the extraction of the compounds of interest present in the grape skins. The treatments applied in the form of nano-urea had comparable effects to those obtained with urea in the conventional way, despite being applied at a significantly lower dose.

Acknowledgements: To all the staff of Estación Enológica de Jumilla

DOI:

Publication date: October 3, 2023

Issue: ICGWS 2023

Type: Article

Authors

María José Giménez-Bañón1*, Diego Fernando Paladines-Quezada1, Juan Daniel Moreno-Olivares1, Belén Parra-Torrejón2, Juan Antonio Bleda-Sánchez1, Gloria-Belén Ramírez-Rodríguez2, José Manuel Delgado-López2, Rocío Gil-Muñóz1

1Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental
2Departamento de Química Inorgánica. Facultad de Ciencias. Universidad de Granada

Contact the author*

Keywords

nanotechnology, nitrogen, fertilization, protein, phenolic-compound, cellulose, uronic-acids

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Towards the understanding of wine distillation in the production of brandy de Jerez. Chemical and sensory characterization of two distillation methods: continuous and batch distillation

Brandy de Jerez (BJ) is a spirit drink made exclusively from spirits and wine distillates and is characterized by the use of casks for aging that previously contained Sherries. The quality and sensory complexity of BJ depend on the raw materials and some factors: grape variety, conditions during processing the wine and its distillation, as well as the aging in the cask. Therefore, the original compounds of the grapes from which it comes are of great interest being in most cases the Airén variety. Their relationship with the quality of the musts and the wines obtained from them has been studied (1) and varies each year of harvest depending on the weather conditions (2).

“Compost Application in the Vineyard: Effects on Soil Nutrition and Compaction”

The mechanization of pruning and harvesting in vineyards has increased the risk of soil compaction. To reclaim soil properties or avoid this degradation process, it is crucial to properly manage the soil organic matter, and the application of compost derived from the vines themselves is a strategy to achieve this. The objective of this study was to evaluate the properties of soil treated with different doses of compost applied both on the vine row and the inter rows of a Vitis vinifera crop.

New varieties descendant from Monastrell with lower sugar and high phenolic content adapted to warm climates

Given that climate change is a continuous process, it is necessary to constantly search for new strategies that help the viticulturist sector to mitigate its consequences. All adaptation strategies will have a greater or lesser effect that in turn will be marked by the times of action. As a long-term action, a genetic breeding program to obtain new varieties descendant from Monastrell has been developed in the Region of Murcia (more specifically, in the IMIDA Research Center) since 1997. In this program, new red varieties have been developed through directed crosses of the Monastrell variety with other varieties such as Cabernet Sauvignon, Tempranillo and Syrah.

Differential gene expression and novel gene models in 110 Richter uncovered through RNA Sequencing of roots under stress

The appearance of the Phylloxera pest in the 19th century in Europe caused dramatical damages in grapevine diversity. To mitigate these losses, grapevine growers resorted to using crosses of different Vitis species, such as 110 Richter (110R) (V. berlandieri x V. rupestris), which has been invaluable for studying adaptations to stress responses in vineyards. Recently, a high quality chromosome scale assembly of 110R was released, but the available gene models were predicted without using as evidence transcriptional sequences obtained from roots, that are crucial organs in rootstock, and they may express certain genes exclusively. Therefore, we employed RNA sequencing reads of 110R roots under different stress conditions to predict new gene models in each haplotype of 110R under different stresses.

Culturable microbial communities associated with the grapevine soil in vineyards of La Rioja, Spain

The definition of soil health is complex due to the lack of agreement on adequate indicators and to the high variability of global soils. Nevertheless, it has been widely used as synonymous of soil quality for more than one decade, and there is a consensus warning of scientists that soil quality and biodiversity loss are occurring due to the traditional intensive agricultural practices.
In this work we monitored a set of soil parameters, both physicochemical and microbiological, in an experimental vineyard under three different management and land use systems: a) addition of external organic matter (EOM) to tilled soil; b) no tillage and plant cover between grapevine rows, and c) grapevines planted in rows running down the slope and tilled soil.