terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effect of foliar application of urea and nano-urea on the cell wall of Monastrell grape skins

Effect of foliar application of urea and nano-urea on the cell wall of Monastrell grape skins

Abstract

The foliar application of urea has been shown to be able to satisfy the specific nutritional needs of the vine as well as to increase the nitrogen composition of the must. On the other hand, the use of nanotechnology could be of great interest in viticulture as it would help to slow down the release of urea and protect it against possible degradation. Several studies indicate that cell wall synthesis and remodeling are affected by nitrogen availability.

The study was carried out over three years (2019, 2020 and 2021), the effect on the main components of the cell wall of Monastrell grape skins was compared to control after foliar treatments with urea and nano-urea. The treatments, in triplicate, were manually applied with a spray dispenser.

The proportion of isolated cell wall was increased in both treatments every year. This rise would indicate a thickening of the cell walls. Proteins were enhanced in 2019 and 2021 in grapes from the two treatments, whereas in 2020 they were not modified. Phenolic compounds were not affected in 2019, decreasing in the nano-urea treatment in 2020 and in the urea treatment in 2021. Cellulose was diminished in 2019 in the nano-urea treatment and in both treatments in 2021, but was not affected in 2020. Hemicellulose was increased for both treatments in both 2019 and 2021, but only for urea in 2020. Finally, uronic acids were lower compared to control for both treatments in 2019, but raise in the two subsequent years.

In conclusion, the cell wall was modified by both treatments, which may have implications on its rigidity and therefore on the extraction of the compounds of interest present in the grape skins. The treatments applied in the form of nano-urea had comparable effects to those obtained with urea in the conventional way, despite being applied at a significantly lower dose.

Acknowledgements: To all the staff of Estación Enológica de Jumilla

DOI:

Publication date: October 3, 2023

Issue: ICGWS 2023

Type: Article

Authors

María José Giménez-Bañón1*, Diego Fernando Paladines-Quezada1, Juan Daniel Moreno-Olivares1, Belén Parra-Torrejón2, Juan Antonio Bleda-Sánchez1, Gloria-Belén Ramírez-Rodríguez2, José Manuel Delgado-López2, Rocío Gil-Muñóz1

1Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental
2Departamento de Química Inorgánica. Facultad de Ciencias. Universidad de Granada

Contact the author*

Keywords

nanotechnology, nitrogen, fertilization, protein, phenolic-compound, cellulose, uronic-acids

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Effect of pH and ethanol on Lactiplantibacillus plantarum in red must fermentation: potential use of wine lees

Wine is the result of the alcoholic fermentation (AF) of grape must. Besides AF, wine can also undergo the malolactic fermentation (MLF) driven out by lactic acid bacteria (LAB). Among LAB, Oenococcus oeni and Lactiplantibacillus plantarum are the dominant species in wine. Even if O. oeni is the most common LAB undergoing MLF in wine, due to its high tolerance to wine conditions, L. plantarum can be used to undergo MLF in must. The moderate tolerance of L. plantarum to low pH and ethanol, may compromise the fermentative process in harsh wines.

Water availability at budbreak time in vineyards that are deficitary irrigated during the summer: Effect on must volatile composition


In recent years, Mediterranean regions are being affected by marked climate changes, primarily characterized by reduced precipitation, greater concurrence of temperature extremes and drought during the growing season, and increased inter-annual variability in temperatures and rainfall. Generally, high-quality red wines need moderate water deficit. Hence, irrigation may be needed to avoid severe vine water stress occurring in some vintages and soils with low holding capacity. The aim of this work was to evaluate the effects of soil recharge irrigation in pre-sprouting and summer irrigation every week (30 % ETO) from the pea size state until the end of ripening (RP) compared to exclusively summer irrigation every week (R) in the same way that RP, on must volatile composition at harvest.

Evaluation of terroir suitability for vine cultivation in new areas using geographic multi-criteria decision support

Based on historical vine cultivation, the recent development of wine production in Drama wine region (Greece) has led to vine cultivation expansion of white and red varieties. The current cultivation of 500 ha of vineyards is expected to increase in the coming years. Natural terroir units (NTU) have been designed recently to support the production of high quality wines in the region [1]. The aim of this work is to evaluate the relevancy of the proposed NTUs regarding their suitability to produce wines of specific sensorial identity, and to provide guidelines for correct site selection for the expanding wine industry of the region.

Characterization of a Sémillon clonal population: exploring genetic diversity, metabolomic profiles, and phenotypic variations

Sémillon is a cultivated grape variety known for contributing to dry and sweet white wine production. However, only seven approved clones have been officially recognized in France[1]. In this study, we aimed to characterize the genetic diversity and metabolomic profiles of a Sémillon clonal population, shedding light on the potential variations within this important grape variety.

Grape pomace, an active ingredient at the intestinal level: Updated evidence

Grape pomace (GP) is a winemaking by-product particularly rich in (poly)phenols and dietary fiber, which are the main active compounds responsible for its health-promoting effects. GP-derived products have been proposed to manage cardiovascular risk factors, including endothelial dysfunction, inflammation, hypertension, hyperglycemia, and obesity. Studies on the potential impact of GP on gut health are much more recent. However, it is suggested that, to some extent, this activity of GP as a cardiometabolic health-promoting ingredient would begin in the gastrointestinal tract as GP components (i.e., (poly)phenols and fiber) undergo extensive catabolism, mainly by the action of the intestinal microbiota, that gives rise to low-molecular-weight bioactive compounds that can be absorbed and utilized by the body.