terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effect of foliar application of urea and nano-urea on the cell wall of Monastrell grape skins

Effect of foliar application of urea and nano-urea on the cell wall of Monastrell grape skins

Abstract

The foliar application of urea has been shown to be able to satisfy the specific nutritional needs of the vine as well as to increase the nitrogen composition of the must. On the other hand, the use of nanotechnology could be of great interest in viticulture as it would help to slow down the release of urea and protect it against possible degradation. Several studies indicate that cell wall synthesis and remodeling are affected by nitrogen availability.

The study was carried out over three years (2019, 2020 and 2021), the effect on the main components of the cell wall of Monastrell grape skins was compared to control after foliar treatments with urea and nano-urea. The treatments, in triplicate, were manually applied with a spray dispenser.

The proportion of isolated cell wall was increased in both treatments every year. This rise would indicate a thickening of the cell walls. Proteins were enhanced in 2019 and 2021 in grapes from the two treatments, whereas in 2020 they were not modified. Phenolic compounds were not affected in 2019, decreasing in the nano-urea treatment in 2020 and in the urea treatment in 2021. Cellulose was diminished in 2019 in the nano-urea treatment and in both treatments in 2021, but was not affected in 2020. Hemicellulose was increased for both treatments in both 2019 and 2021, but only for urea in 2020. Finally, uronic acids were lower compared to control for both treatments in 2019, but raise in the two subsequent years.

In conclusion, the cell wall was modified by both treatments, which may have implications on its rigidity and therefore on the extraction of the compounds of interest present in the grape skins. The treatments applied in the form of nano-urea had comparable effects to those obtained with urea in the conventional way, despite being applied at a significantly lower dose.

Acknowledgements: To all the staff of Estación Enológica de Jumilla

DOI:

Publication date: October 3, 2023

Issue: ICGWS 2023

Type: Article

Authors

María José Giménez-Bañón1*, Diego Fernando Paladines-Quezada1, Juan Daniel Moreno-Olivares1, Belén Parra-Torrejón2, Juan Antonio Bleda-Sánchez1, Gloria-Belén Ramírez-Rodríguez2, José Manuel Delgado-López2, Rocío Gil-Muñóz1

1Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental
2Departamento de Química Inorgánica. Facultad de Ciencias. Universidad de Granada

Contact the author*

Keywords

nanotechnology, nitrogen, fertilization, protein, phenolic-compound, cellulose, uronic-acids

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Detoxification capacities of heavy metals and pesticides by yeasts 

Winegrowing is still characterized by the extensive use of chemical fertilizers and plant protection products, despite strong recommendations to limit these practices. A part of these xenobiotics and metals are then found in grape juice and wine, causing a major health concern, as well as negatively affecting the fermentation process. In recent years, there has been renewed interest in non-Saccharomyces yeasts. These species have a wide phenotypic diversity, which would be exploited to broaden the aromatic palette of wines.

Rootstock effect on Cabernet Sauvignon aromatic and chemical composition

Grape quality potential for wine production is strongly influenced by environmental parameters and agronomic factors. Several studies underline the rootstock effect on scions vegetative growth and berry composition [1] with an impact on wine quality. Rootstocks are promising agronomic tools for climate change adaptation and in most grape-growing regions the potential diversity of rootstocks is not fully used and only a few genotypes are planted. Moreover, little is known about the effect of rootstock genetic variability on the aromatic composition in wines.

Mapping grapevine metabolites in response to pathogen challenge: a Mass Spectrometry Imaging approach

Every year, viticulture is facing several outbreaks caused by established diseases, such as downy mildew and grey mould, which possess different life cycles and modes of infection. To cope with these different aggressors, grapevine must recognize them and arm itself with an arsenal of defense strategies.
The regulation of secondary metabolites is one of the first reactions of plants upon pathogen challenge. Their rapid biosynthesis can highly contribute to strengthen the defense mechanisms allowing the plant to adapt, defend and survive.

Evaluation of terroir suitability for vine cultivation in new areas using geographic multi-criteria decision support

Based on historical vine cultivation, the recent development of wine production in Drama wine region (Greece) has led to vine cultivation expansion of white and red varieties. The current cultivation of 500 ha of vineyards is expected to increase in the coming years. Natural terroir units (NTU) have been designed recently to support the production of high quality wines in the region [1]. The aim of this work is to evaluate the relevancy of the proposed NTUs regarding their suitability to produce wines of specific sensorial identity, and to provide guidelines for correct site selection for the expanding wine industry of the region.

The effect of ozonated water treatment on the metabolic profile and resistance of vines to Downy and powdery mildew 

Ozone is a potent oxidizing compound that quickly decomposes into oxygen without residues. Previous works reported that ozone is not only a disinfectant that directly harms the pathogens of the vine but also activates systemic defense systems in the plant by activating oxidative stress. We assume these systemic defense mechanisms are essential to the vines’ resistance to downy and powdery mildew (Plasmopara viticola & Erysiphe necator, respectively). The goals of the research are to examine the effect of spraying with ozone water on the plant’s resistance against the mentioned pathogens as well as to characterize the metabolic profile of the plants treated with ozone as well as physiological characteristics in the vines such as the level of Photosynthesis and crop yield. Vines in the vineyard sprayed with ozone water at concentrations of 2 and 4 PPM weekly and biweekly, untreated control & conventional spray. Leaves were taken from vines 2,4,7,9 and 11 days after exposure to ozone and inoculated with the pathogens.