terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 High-throughput sequencing analysis based on nematode indices revealed healthier soils of organic vineyards 

High-throughput sequencing analysis based on nematode indices revealed healthier soils of organic vineyards 

Abstract

Proper soil health assessments are crucial for sustainable cropland. Among the widely employed approaches, evaluating nematode community structure is particularly suitable. Traditionally, the taxonomic characterization of soil nematodes has relied on time-consuming morphology-based methods requiring experienced experts. However, molecular tools like high-throughput sequencing have emerged as efficient alternatives. In this study, we performed a metataxonomic analysis of soil samples collected from 57 vineyards in the DOCa Rioja region of Northern Spain, focusing on the impact of organic viticulture and cover cropping compared to integrated pest management (IPM) and tilling practices. Our goal was to investigate the potential benefits of organic viticulture and cover cropping on the quality and biodiversity of vineyard soils. The soil samples were collected to a depth of 20 cm, and the vineyards were categorized based on their pest and soil management strategies. Employing specific primers and following the Illumina amplicon protocol, we conducted sequencing on the Illumina MiSeq platform (2×300 bp). The resulting data underwent bioinformatics analysis utilizing Qiime2 and the SILVA v138.1 database to explore biodiversity measures and differentially abundant taxa. Over 80 taxonomic groups (genus/family) of nematodes were identified and utilized for calculating nematode-based indices using the NINJA platform. Findings showed no significant differences between cover cropping and tilling practices but for pest management. Thus, organic viticulture increased the α-biodiversity of soil nematodes, and nematode-based indices revealed raised environmental disturbance, higher occurrence of plant-parasitic nematodes of adverse implications for crop health, and declined soil food web structure in IPM vineyards. In conclusion, this approach appears well suited to assess vineyard soil health.

DOI:

Publication date: October 3, 2023

Issue: ICGWS 2023

Type: Article

Authors

Rubén Blanco-Pérez1*, María de Toro2, Sara Sánchez-Moreno3, Sergio Álvarez-Ortega4, Alícia Pou1, Raquel Campos-Herrera1

1 Instituto de Ciencias de la Vid y del Vino (CSIC-Univ. de La Rioja-Gobierno de La Rioja), Logroño, Spain.
Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain.
Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain.
Universidad Rey Juan Carlos, Madrid, Spain.

Contact the author*

Keywords

bioindicators, cover cropping, DNA-metabarcoding, pest management, tillage

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Long-lasting flavour perception of wines treated with oenological additives considering the individual PROP taste-phenotype

The use of oenological additives is becoming a common practice due to the technological and sensory properties they provide to the wines. However, the number of studies focused on the impact that these additives might induce on wine flavor perception during wine tasting is still quite scarce. The aim of this work was to evaluate the effect of three different types of common oenological additives: two oenotannins (ellagitannin and gallotannin) and a commercial preparation of yeast mannoproteins on the long-lasting flavor perception (aroma and astringency).

The weak role of organic mulches in shaping bacterial communities in grapevine

The interest in sustainable and ecologic agricultural practices in grapevine has grown significantly in recent years in the context of ecological transition. Organic mulches are treatments that support the circular economy and positively affect the soil and the plant. They are an alternative to herbicides and other conventional practices since they may influence soil moisture, erosion, structure and weed control. However, their effects on the soil and must microbiota remain unknown.

The environmental footprint of selected vineyard management practices: A case study from Logroño (La Rioja) Spain

Viticulture is globally important for socioeconomic and environmental reasons. The EU is globally leading grape and wine production, and Spain is among the top grape and wine producers. As climate change affects viticulture, mitigation and adaptation are crucial for protecting grape production. In this research work, data on viticultural management practices such as soil cultivation, irrigation, energy, machinery, plant protection and the use of fertilizers from vineyards located in Logroño (La Rioja) have been obtained.

Effect of rising atmospheric CO2 levels on grapevine yield and composition by the middle of the 21st century: what can we learn from the VineyardFACE?

Atmospheric CO2 levels have been rising continuously since the industrial revolution, affecting crop physiology, yield and quality of harvest products, and grapevine is no exception [1]. Most of previously reported studies used potted plants in controlled environments, and explored grapevine response to relatively high CO2 levels, 700 ppm or more. The vineyardFACE, established in Geisenheim in 2012, uses a free air carbon dioxide enrichment (FACE) system to simulate a moderate (ambient +20%) increase in atmospheric CO2 in a vineyard planted with cvs. Cabernet-Sauvignon and Riesling grafted on rootstock 161-49 Couderc and SO4, respectively.

The use of δ13C as an indicator of water use efficiency for the selection of drought tolerant grapevine varieties

In the context of climate change with increasing evaporative demand, understanding the water use behavior of different grapevine cultivars is of critical importance. Carbon isotope discrimination (δ13C) measurements in wine provide a precise and integrated assessment of the water status of the vines during the sugar accumulation period in grape berries. When collected over multiple vintages on different cultivars, δ13C measurements can also provide insights into the effects of genotype on water use efficiency.