terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 High-throughput sequencing analysis based on nematode indices revealed healthier soils of organic vineyards 

High-throughput sequencing analysis based on nematode indices revealed healthier soils of organic vineyards 

Abstract

Proper soil health assessments are crucial for sustainable cropland. Among the widely employed approaches, evaluating nematode community structure is particularly suitable. Traditionally, the taxonomic characterization of soil nematodes has relied on time-consuming morphology-based methods requiring experienced experts. However, molecular tools like high-throughput sequencing have emerged as efficient alternatives. In this study, we performed a metataxonomic analysis of soil samples collected from 57 vineyards in the DOCa Rioja region of Northern Spain, focusing on the impact of organic viticulture and cover cropping compared to integrated pest management (IPM) and tilling practices. Our goal was to investigate the potential benefits of organic viticulture and cover cropping on the quality and biodiversity of vineyard soils. The soil samples were collected to a depth of 20 cm, and the vineyards were categorized based on their pest and soil management strategies. Employing specific primers and following the Illumina amplicon protocol, we conducted sequencing on the Illumina MiSeq platform (2×300 bp). The resulting data underwent bioinformatics analysis utilizing Qiime2 and the SILVA v138.1 database to explore biodiversity measures and differentially abundant taxa. Over 80 taxonomic groups (genus/family) of nematodes were identified and utilized for calculating nematode-based indices using the NINJA platform. Findings showed no significant differences between cover cropping and tilling practices but for pest management. Thus, organic viticulture increased the α-biodiversity of soil nematodes, and nematode-based indices revealed raised environmental disturbance, higher occurrence of plant-parasitic nematodes of adverse implications for crop health, and declined soil food web structure in IPM vineyards. In conclusion, this approach appears well suited to assess vineyard soil health.

DOI:

Publication date: October 3, 2023

Issue: ICGWS 2023

Type: Article

Authors

Rubén Blanco-Pérez1*, María de Toro2, Sara Sánchez-Moreno3, Sergio Álvarez-Ortega4, Alícia Pou1, Raquel Campos-Herrera1

1 Instituto de Ciencias de la Vid y del Vino (CSIC-Univ. de La Rioja-Gobierno de La Rioja), Logroño, Spain.
Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain.
Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain.
Universidad Rey Juan Carlos, Madrid, Spain.

Contact the author*

Keywords

bioindicators, cover cropping, DNA-metabarcoding, pest management, tillage

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Tackling the 3D root system architecture of grapevines: a new phenotyping pipeline based on photogrammetry

Plant roots fulfil important functions as they are responsible for the acquisition of water and nutrients, for anchorage and stability, for interaction with symbionts and, in some cases, for the storage of carbohydrates. These functions are associated with the Root System Architecture (RSA, i.e. the form and the spatial arrangement of the roots in the soil). The RSA results from several biological processes (elongation, ramification, mortality…) genetically determined but with high structural plasticity.

The evolution of the aromatic composition of carbonic maceration wines

The vinification by Carbonic maceration (CM) involves the process whereby the whole bunches are subjected to anaerobic conditions during several days. In this anaerobic condition, the grape endogenous enzymes begin an intracellular fermentation. This situation favors that whole grapes split open and release their juice into the tank, increasing the liquid phase that is fermented by yeasts [1]. Then, two types of wines are obtained; one from the free-run liquid in the tank (FCM) and other from the liquid after pressing the whole grape bunches (PCM). PCM wines are recognized as high quality young wines because their fruity and floral aromas[2] that although they are very intense at the end of the winemaking they gradually disappear during conservation.

Metabolomic profiling of heat-stressed grape berries 

The projected rise in mean air temperatures together with the frequency, intensity, and length of heat waves in many wine-growing regions worldwide will deeply impact grape berry development and quality. Several studies have been conducted and a large set of molecular data was produced to better understand the impact of high temperatures on grape berry development and metabolism[1]. According to these data, it is highly likely that the metabolomic dynamics could be strongly modulated by heat stress (HS).

New crossbreed winegrape genotypes cultivated under rainfed conditions in a semi-arid Mediterranean region

Traditional drought tolerant varieties such as Cabernet Sauvignon, Monastrell, and Syrah [1], have been used as parents in the grapevine breeding program initiated by the Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental (IMIDA) in 1997 [2]. This work presents the results of evaluating three new genotypes obtained from crosses between ‘Monastrell’ and ‘Cabernet Sauvignon’ (MC16 and MC80) and between ‘Monastrell’ and ‘Syrah’ (MS104), comparing their performance under conditions of water scarcity and high temperatures with that of their respective parental varieties. For this purpose, the six genotypes were cultivated under controlled irrigation conditions (60% ETc) and rainfed conditions.

Anthocyanin content and composition of Merlot grapes under temperature and late pruning conditions 

One of the main aspects of Climate Change is the increase of temperatures during summer and grape maturity period. Physiological processes are influenced by these high temperatures and result in grapes with higher sugar concentration, less acidity and less anthocyanin content among other quality changes. One strategy to deal with the climate change effects is the implementation of late winter pruning to alter the effect of high temperatures during key periods by delays in maturity time.