terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 High-throughput sequencing analysis based on nematode indices revealed healthier soils of organic vineyards 

High-throughput sequencing analysis based on nematode indices revealed healthier soils of organic vineyards 

Abstract

Proper soil health assessments are crucial for sustainable cropland. Among the widely employed approaches, evaluating nematode community structure is particularly suitable. Traditionally, the taxonomic characterization of soil nematodes has relied on time-consuming morphology-based methods requiring experienced experts. However, molecular tools like high-throughput sequencing have emerged as efficient alternatives. In this study, we performed a metataxonomic analysis of soil samples collected from 57 vineyards in the DOCa Rioja region of Northern Spain, focusing on the impact of organic viticulture and cover cropping compared to integrated pest management (IPM) and tilling practices. Our goal was to investigate the potential benefits of organic viticulture and cover cropping on the quality and biodiversity of vineyard soils. The soil samples were collected to a depth of 20 cm, and the vineyards were categorized based on their pest and soil management strategies. Employing specific primers and following the Illumina amplicon protocol, we conducted sequencing on the Illumina MiSeq platform (2×300 bp). The resulting data underwent bioinformatics analysis utilizing Qiime2 and the SILVA v138.1 database to explore biodiversity measures and differentially abundant taxa. Over 80 taxonomic groups (genus/family) of nematodes were identified and utilized for calculating nematode-based indices using the NINJA platform. Findings showed no significant differences between cover cropping and tilling practices but for pest management. Thus, organic viticulture increased the α-biodiversity of soil nematodes, and nematode-based indices revealed raised environmental disturbance, higher occurrence of plant-parasitic nematodes of adverse implications for crop health, and declined soil food web structure in IPM vineyards. In conclusion, this approach appears well suited to assess vineyard soil health.

DOI:

Publication date: October 3, 2023

Issue: ICGWS 2023

Type: Article

Authors

Rubén Blanco-Pérez1*, María de Toro2, Sara Sánchez-Moreno3, Sergio Álvarez-Ortega4, Alícia Pou1, Raquel Campos-Herrera1

1 Instituto de Ciencias de la Vid y del Vino (CSIC-Univ. de La Rioja-Gobierno de La Rioja), Logroño, Spain.
Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain.
Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain.
Universidad Rey Juan Carlos, Madrid, Spain.

Contact the author*

Keywords

bioindicators, cover cropping, DNA-metabarcoding, pest management, tillage

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Identification of important genomic regions controlling resistance to biotic and abiotic stresses in Vitis sp. through QTL meta-analysis

In the context of global change, the environmental conditions are expected to be more stressful for viticulture. The choice of the rootstock may play a crucial role to improve the adaptation of viticulture to new biotic and abiotic threats (Ollat et al., 2016). However, the selection of interesting traits in rootstock breeding programs is complex because of the combination of multiple targets in a same ideotype. In this sense, the integration of studies about the genetic architecture for desired biotic and abiotic response traits allow us to identify genomic regions to combine and those with interesting pleiotropic effects.

The evolution of the aromatic composition of carbonic maceration wines

The vinification by Carbonic maceration (CM) involves the process whereby the whole bunches are subjected to anaerobic conditions during several days. In this anaerobic condition, the grape endogenous enzymes begin an intracellular fermentation. This situation favors that whole grapes split open and release their juice into the tank, increasing the liquid phase that is fermented by yeasts [1]. Then, two types of wines are obtained; one from the free-run liquid in the tank (FCM) and other from the liquid after pressing the whole grape bunches (PCM). PCM wines are recognized as high quality young wines because their fruity and floral aromas[2] that although they are very intense at the end of the winemaking they gradually disappear during conservation.

Bioprotection of grape must by Metschnikowia sp.: genericity and mechanism

The market trend heads to food products with less chemical inputs, including in oenology. During the winemaking process, sulfites are commonly use to avoid microbiological contamination and stabilization of the wine thanks to its antimicrobial and antioxidant activities. Nevertheless, this use is not without consequences on human health and environment, leading for example to allergic reaction and pollution. A biological alternative to these sulfites has emerges: the bioprotection.

High-throughput screening of physical-mechanical berry skin traits facilitates targeted selection of breeding material with resistance to Botrytis bunch rot and grape sunburn

The ongoing climate change implies an increasing mean air temperature, which is signified by weather extremes or sudden changes between drought and local heavy rainfalls. These changing conditions are especially challenging for the established grapevine varieties growing under cool climate conditions due to an increased risk for fungal diseases like downy mildew (DM) and Botrytis bunch rot (BBR) as well as for grape sunburn. To meet that demand, the scope of most grapevine breeding programs is the selection of mildew fungus-resistant and climatic adapted grapevines with balanced, healthy yield and outstanding wine quality.

Differential gene expression and novel gene models in 110 Richter uncovered through RNA Sequencing of roots under stress

The appearance of the Phylloxera pest in the 19th century in Europe caused dramatical damages in grapevine diversity. To mitigate these losses, grapevine growers resorted to using crosses of different Vitis species, such as 110 Richter (110R) (V. berlandieri x V. rupestris), which has been invaluable for studying adaptations to stress responses in vineyards. Recently, a high quality chromosome scale assembly of 110R was released, but the available gene models were predicted without using as evidence transcriptional sequences obtained from roots, that are crucial organs in rootstock, and they may express certain genes exclusively. Therefore, we employed RNA sequencing reads of 110R roots under different stress conditions to predict new gene models in each haplotype of 110R under different stresses.