terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 High-throughput sequencing analysis based on nematode indices revealed healthier soils of organic vineyards 

High-throughput sequencing analysis based on nematode indices revealed healthier soils of organic vineyards 

Abstract

Proper soil health assessments are crucial for sustainable cropland. Among the widely employed approaches, evaluating nematode community structure is particularly suitable. Traditionally, the taxonomic characterization of soil nematodes has relied on time-consuming morphology-based methods requiring experienced experts. However, molecular tools like high-throughput sequencing have emerged as efficient alternatives. In this study, we performed a metataxonomic analysis of soil samples collected from 57 vineyards in the DOCa Rioja region of Northern Spain, focusing on the impact of organic viticulture and cover cropping compared to integrated pest management (IPM) and tilling practices. Our goal was to investigate the potential benefits of organic viticulture and cover cropping on the quality and biodiversity of vineyard soils. The soil samples were collected to a depth of 20 cm, and the vineyards were categorized based on their pest and soil management strategies. Employing specific primers and following the Illumina amplicon protocol, we conducted sequencing on the Illumina MiSeq platform (2×300 bp). The resulting data underwent bioinformatics analysis utilizing Qiime2 and the SILVA v138.1 database to explore biodiversity measures and differentially abundant taxa. Over 80 taxonomic groups (genus/family) of nematodes were identified and utilized for calculating nematode-based indices using the NINJA platform. Findings showed no significant differences between cover cropping and tilling practices but for pest management. Thus, organic viticulture increased the α-biodiversity of soil nematodes, and nematode-based indices revealed raised environmental disturbance, higher occurrence of plant-parasitic nematodes of adverse implications for crop health, and declined soil food web structure in IPM vineyards. In conclusion, this approach appears well suited to assess vineyard soil health.

DOI:

Publication date: October 3, 2023

Issue: ICGWS 2023

Type: Article

Authors

Rubén Blanco-Pérez1*, María de Toro2, Sara Sánchez-Moreno3, Sergio Álvarez-Ortega4, Alícia Pou1, Raquel Campos-Herrera1

1 Instituto de Ciencias de la Vid y del Vino (CSIC-Univ. de La Rioja-Gobierno de La Rioja), Logroño, Spain.
Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain.
Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain.
Universidad Rey Juan Carlos, Madrid, Spain.

Contact the author*

Keywords

bioindicators, cover cropping, DNA-metabarcoding, pest management, tillage

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Correlative study between degradation of rosé wine under accelerated conditions and under normal conditions

Several studies have tried to develop different methods to study the photodegradation of wine in an accelerated way, trying to elucidate the effect of light on the wine compounds[1]. In a previous study, our team developed a chamber that speeds up the photodegradation of rosé wine[2]. In the present work we have tried to establish a correlation between irradiation times in accelerated conditions and the natural exposure to the cycles of light that usually exist in markets or at home.

Biotic and abiotic factors affecting physiological aspects underlying vegetative vigour in two commercial grapevine varieties

Grapevine vigour, defined as the propensity to assimilate, store and/or use non-structural sugars for allowing fast growth of shoots and producing large canopies[1], is crucial to optimize vineyard management. Recently, a model has been proposed for predicting the vigor of young grapevines through the measurement of the vegetative growth and physiological parameters, such as water status and gas exchange[2]. Our objectives were (1) to explore the influence of the association of two grapevine varieties (Tempranillo and Cabernet Sauvignon, grafted onto R110 rootstocks) with arbuscular mycorrhizal fungi (AMF) on the vegetative vigour of young plants; and (2) to assess the effect of environmental factors linked to climate change on the vegetative vigour of Cabernet Sauvignon.

Time vs drought: leaf age rather than drought drives osmotic adjustment in V. vinifera cv. Pinot Noir

Global warming and increased frequency and/or severity of drought events are among the most threatening consequences of climate change for agricultural crops. In response to drought, grapevine (as many other plants) exhibits osmotic adjustment through active accumulation of osmolytes which in turn shift the leaf turgor loss point (TLP) to more negative values, allowing to maintain stomata opened at lower water potentials1. We investigated the capacity of Pinot noir leaves to modulate their osmotic potential as a function of: (i) time (seasonal osmoregulation), (ii) growing temperatures, and (iii) drought events, to enhance comprehension of the resilience of grapevines in drought conditions. We performed trails under semi-controlled field conditions, and in two different greenhouse chambers (20/15 °C vs 25/20 °C day/night). For two consecutive vegetative seasons, grafted potted grapevines (Pinot noir/SO4) were subjected to two different water regimes for at least 30 days: well-watered (WW) and water deficit (WD).

Assessment of plant water consumption rates under climate change conditions through an automated modular platform

The impact of climate change is noticeable in the present weather, making water scarcity the most immediate mediator reducing the performance and viability of crops, including grapevine (Vitis vinifera L.). The present study developed a system (hardware, firmware, and software) for the determination of plant water use through changes in weight through a period. The aim is to measure the differences in grapevine water consumption in response to climate change (+4oC and 700 ppm) under controlled conditions. The results reveal a correlation between daily plant consumption rates and reference evapotranspiration (ETo).

Organic mulches slightly influence wine phenolic composition and sensorial properties

Grapevines have traditionally been grown in semi-arid areas, but viticulture is now compromised by climate change. Therefore, it is necessary to implement environmentally friendly viticulture practices to adapt grapevines to current climatic conditions. In this context, organic mulches offer many benefits, such as reduced soil erosion and increased organic matter, soil water content and crop productivity. However, these practices must not compromise grape and wine quality. Therefore, the objective of this study was to evaluate the effect on wine physicochemical and phenolic composition and sensorial properties of different soil management practices on the vine row. Over four years, five soil treatments were examined in two different vineyards.