terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Reconstructing ancient microbial fermentation genomes from the wine residues of Herod, Roman king of Judea

Reconstructing ancient microbial fermentation genomes from the wine residues of Herod, Roman king of Judea

Abstract

The fortress of the Herodium, built towards the end of the first century BCE/ante Cristo, on the orders of Herod the Great, Roman client king of Judea, attests the expansion of Roman influence in the eastern Mediterranean. During archaeological excavations of the Herodium in 2017[1], a winery was discovered on the ground floor of the palace, with an assortment of clay vessels in situ, including large dolia – clay fermentation vessels each capable of fermenting up to 300-400 L of wine. Thanks to the recent progresses in the field of paleogenomics[2], we could analyse the organic material consistent with grape pomace at the bottom of these vessels, by extracting and sequencing the DNA using shotgun metagenomics and targeted capture, aiming for enrichment of DNA from fermentation associated microbes. After controlling for environmental and modern contamination, we successfully reconstructed and analysed the high-quality metagenome-assembled genomes (MAGs) from a phylogenetic and functional perspective. The phylogenetic signal of these ancient fermentation bacteria confirmed both their ancient origin and their affiliation to bacteria associated with wine fermentation. Gene functional analysis of the reconstructed fermentation-associated MAGs revealed an assortment of genes typically expected in lactic acid bacteria involved in wine fermentation, as well as genes involved in the production of wine spoilage compounds, especially in species typically viewed today as less desirable bacteria. Overall, our analysis brings a new appreciation of winemaking in Roman Judea and enriches our understanding of Roman accounts of flavouring wine with different herbs and aromatics, which may have been performed in part to mask the off-flavour compounds produced by bacterial wine spoilage genes.

Acknowledgements:

Werner Siemens Foundation (PALEOBIOTECHNOLOGY, funding M.B. and C.W.) and Deutsche Forschungsgemeinschaft (Balance of the Microverse, EXC 2051 #390713860, funding M.B. and C.W.)

References:

  1. Porat, R., Kalman, Y., Chachy, R., terem, shulamit, Bar-Natan, R., Ecker, A., Ben-Gedalya, T., Drori, E., & Weiss, E. (2018). Herod’s Royal Winery and Wine Storage Facility in the Outer Structure of the Mountain Palace-Fortress at Herodium. Qadmoniot (156, 106–1)
  2. Orlando, L., Allaby, R., Skoglund, P., Der Sarkissian, C., Stockhammer, P. W., Ávila-Arcos, M. C., Fu, Q., Krause, J., Willerslev, E., Stone, A. C., & Warinner, C. (2021). Ancient DNA analysis. Nature Reviews Methods Primers, 1(1), 14, DOI 10.1038/s43586-020-00011-0

DOI:

Publication date: October 3, 2023

Issue: ICGWS 2023

Type: Article

Authors

Maxime Borry1,2, Tziona Ben Gedalya3, Herodion Expedition4, Alexander Herbig1, Christina Warinner1,5,6

1Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
2Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
3Eastern R&D Center, Ariel University, Ariel, Israel
4Hebrew University
5Faculty of Biological Sciences, Friedrich-Schiller University, Jena, Germany
6Department of Anthropology, Harvard University, Cambridge, MA, USA

Contact the author*

Keywords

roman, herod, judea, paleogenomics, metagenomics, genome, bacteria, ancient DNA

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Preliminary results of water status and metabolite content of three new crossbreed winegrape genotypes

This study presents the preliminary results obtained in 2022, of the evaluation of three new crossbreed winegrape genotypes and their parental varieties, grown under controlled irrigation (60% ETc) and rainfed conditions in a wine-growing area with scarcity of water and high temperatures (Murcia, southeast Spain). The genotypes MC16 and MC80 were obtained from crosses between the varieties ‘Monastrell’ and ‘Cabernet Sauvignon’, and MS104 from crosses between ‘Monastrell’ and ‘Syrah’ [1]. The objective of this study was to analyse the physiological response and vegetative development of the 6 genotypes under the two irrigation conditions, and to study their effect on the content of soluble sugars and chlorophyll in the leaf.

Use of UHPH to improve the implantation of non-Saccharomyces yeasts

Ultra High-Pressure Homogenization (UHPH) is a high-pressure pumping at 300 MPa (>200 MPa) with a subsequent depressurization against a highly resistant valve made of tungsten carbide covered by ceramic materials or carbon nanoparticles. The intense impact and shear efforts produce the nano-fragmentation of colloidal biopolymers including the elimination of microorganism (pasteurization or sterilization depending on in-valve temperature) and the inactivation of enzymes.

Distribution and sensory impact of new oak wood-derived compounds in wines

Despite the numerous research studies carried out in recent years, the study of wine aroma remains of great interest due to its complexity. Wine maturation in oak barrels is described as an important step in the production of quality wines. In fact, oak wood develops several aromatic nuances through its toasting which can be released into the wine. A great deal of work has been performed in order to identify the wood-derived volatile compounds that contribute to wine aroma (e.g., whisky-lactone, maltol, eugenol, guaiacol, vanillin).

Anthocyanin content and composition of Merlot grapes under temperature and late pruning conditions 

One of the main aspects of Climate Change is the increase of temperatures during summer and grape maturity period. Physiological processes are influenced by these high temperatures and result in grapes with higher sugar concentration, less acidity and less anthocyanin content among other quality changes. One strategy to deal with the climate change effects is the implementation of late winter pruning to alter the effect of high temperatures during key periods by delays in maturity time.

Effects of heat and water stress on grapevine health: primary and secondary metabolism

Grapevine resilience to climate change has become one of the most pressing topics in the Viticulture & Enology field. Vineyard health demands understanding the mechanisms that explain the direct and indirect interactions between environmental stressors. The current climate change scenario, where drought and heat-wave are more frequent and intense, strongly demands improving our knowledge of environmental stresses. During a heatwave, the ambient temperature rises above the plant’s average tolerance threshold and, generally, above 35 oC plant’s adaptation to heat stress is activated.