terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Reconstructing ancient microbial fermentation genomes from the wine residues of Herod, Roman king of Judea

Reconstructing ancient microbial fermentation genomes from the wine residues of Herod, Roman king of Judea

Abstract

The fortress of the Herodium, built towards the end of the first century BCE/ante Cristo, on the orders of Herod the Great, Roman client king of Judea, attests the expansion of Roman influence in the eastern Mediterranean. During archaeological excavations of the Herodium in 2017[1], a winery was discovered on the ground floor of the palace, with an assortment of clay vessels in situ, including large dolia – clay fermentation vessels each capable of fermenting up to 300-400 L of wine. Thanks to the recent progresses in the field of paleogenomics[2], we could analyse the organic material consistent with grape pomace at the bottom of these vessels, by extracting and sequencing the DNA using shotgun metagenomics and targeted capture, aiming for enrichment of DNA from fermentation associated microbes. After controlling for environmental and modern contamination, we successfully reconstructed and analysed the high-quality metagenome-assembled genomes (MAGs) from a phylogenetic and functional perspective. The phylogenetic signal of these ancient fermentation bacteria confirmed both their ancient origin and their affiliation to bacteria associated with wine fermentation. Gene functional analysis of the reconstructed fermentation-associated MAGs revealed an assortment of genes typically expected in lactic acid bacteria involved in wine fermentation, as well as genes involved in the production of wine spoilage compounds, especially in species typically viewed today as less desirable bacteria. Overall, our analysis brings a new appreciation of winemaking in Roman Judea and enriches our understanding of Roman accounts of flavouring wine with different herbs and aromatics, which may have been performed in part to mask the off-flavour compounds produced by bacterial wine spoilage genes.

Acknowledgements:

Werner Siemens Foundation (PALEOBIOTECHNOLOGY, funding M.B. and C.W.) and Deutsche Forschungsgemeinschaft (Balance of the Microverse, EXC 2051 #390713860, funding M.B. and C.W.)

References:

  1. Porat, R., Kalman, Y., Chachy, R., terem, shulamit, Bar-Natan, R., Ecker, A., Ben-Gedalya, T., Drori, E., & Weiss, E. (2018). Herod’s Royal Winery and Wine Storage Facility in the Outer Structure of the Mountain Palace-Fortress at Herodium. Qadmoniot (156, 106–1)
  2. Orlando, L., Allaby, R., Skoglund, P., Der Sarkissian, C., Stockhammer, P. W., Ávila-Arcos, M. C., Fu, Q., Krause, J., Willerslev, E., Stone, A. C., & Warinner, C. (2021). Ancient DNA analysis. Nature Reviews Methods Primers, 1(1), 14, DOI 10.1038/s43586-020-00011-0

DOI:

Publication date: October 3, 2023

Issue: ICGWS 2023

Type: Article

Authors

Maxime Borry1,2, Tziona Ben Gedalya3, Herodion Expedition4, Alexander Herbig1, Christina Warinner1,5,6

1Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
2Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
3Eastern R&D Center, Ariel University, Ariel, Israel
4Hebrew University
5Faculty of Biological Sciences, Friedrich-Schiller University, Jena, Germany
6Department of Anthropology, Harvard University, Cambridge, MA, USA

Contact the author*

Keywords

roman, herod, judea, paleogenomics, metagenomics, genome, bacteria, ancient DNA

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

The weak role of organic mulches in shaping bacterial communities in grapevine

The interest in sustainable and ecologic agricultural practices in grapevine has grown significantly in recent years in the context of ecological transition. Organic mulches are treatments that support the circular economy and positively affect the soil and the plant. They are an alternative to herbicides and other conventional practices since they may influence soil moisture, erosion, structure and weed control. However, their effects on the soil and must microbiota remain unknown.

Adsorption of tetraconazole by organic residues and vineyard organically-amended soils 

Spain is the country with the largest wine-producing area in the EU and its productivity is largely controlled applying fungicides. However, residues of these compounds can move and contaminate surface and groundwater. The objective of this work was to evaluate the capacity of bioadsorbents from different origin to adsorb and immobilize tetraconazole by themselves or when applied as organic soil amendment, and to prevent soil and water contamination by this fungicide. The adsorption of tetraconazole by 3 organic residues: spent mushroom substrate (SMS), green compost (GC) and vine pruning sawdust (VP), as well as by vineyard soils unamended and amended individually with these residues at 1.5% (w/w) was evaluated using the batch equilibrium technique.

Unveiling a hidden link: does time hold the key to altered spectral signatures of grapevines under drought?

Remote sensing technology captures spectral data beyond the visible range, making it useful for monitoring plant stress. Vis-NIR (Visible-Near Infrared) spectroscopy (400-1000 nm) is commonly used to indirectly assess plant status during drought. One example is the widespread use of normalized difference vegetation index (NDVI) that is strongly linked to green biomass. However, a knowledge gap exists regarding the applicability of this method to all the drought conditions and if it is a direct correlation to the water status of the plant.

Do wine sulphites affect gut microbiota? An in vitro study of their digestion in the gastrointestinal tract

“Sulphites” and mainly sulphur dioxide (SO2) is by far the most widely used additive (E-220/INS 220) in winemaking and likely the most difficult to replace. The well-known antioxidant, antioxidasic and antimicrobial properties of SO2 make this molecule a practically essential tool, not only in winemaking, but also in the production of other food products. The current trend in winemaking is the reduction of this unfriendly additive due to its negative effects on health and environmental. In particular, it could cause headaches and intolerance/allergic reactions in sensitive individuals. Wine is considered one of the major contributors of exposure of SO2 in the adult population, when this beverage is included in the diet.

Volatilome in grapevine leaves is defined by the variety and modulated by mycorrhizal symbiosis

Volatile organic compounds (VOCs) constitute a diverse group of secondary metabolites key for the communication of plants with other organisms and for their adaptation to environmental and biotic stresses. The emission of these compounds through leaves is also affected by the interaction of plants with symbiotic microorganisms, arbuscular mycorrhizal fungi (AMF) among them [1]. Our objective was to know the concentration and profile of VOCs emitted by the leaves of two grapevine varieties (Tempranillo, T, and Cabernet Sauvignon, CS, grafted onto R110 rootstocks), inoculated or not with a consortium of five AMF (Rhizophagus irregularis, Funneliformis mosseae, Septoglomus deserticola, Claroideoglomus claroideum and C. etunicatum).