terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Reconstructing ancient microbial fermentation genomes from the wine residues of Herod, Roman king of Judea

Reconstructing ancient microbial fermentation genomes from the wine residues of Herod, Roman king of Judea

Abstract

The fortress of the Herodium, built towards the end of the first century BCE/ante Cristo, on the orders of Herod the Great, Roman client king of Judea, attests the expansion of Roman influence in the eastern Mediterranean. During archaeological excavations of the Herodium in 2017[1], a winery was discovered on the ground floor of the palace, with an assortment of clay vessels in situ, including large dolia – clay fermentation vessels each capable of fermenting up to 300-400 L of wine. Thanks to the recent progresses in the field of paleogenomics[2], we could analyse the organic material consistent with grape pomace at the bottom of these vessels, by extracting and sequencing the DNA using shotgun metagenomics and targeted capture, aiming for enrichment of DNA from fermentation associated microbes. After controlling for environmental and modern contamination, we successfully reconstructed and analysed the high-quality metagenome-assembled genomes (MAGs) from a phylogenetic and functional perspective. The phylogenetic signal of these ancient fermentation bacteria confirmed both their ancient origin and their affiliation to bacteria associated with wine fermentation. Gene functional analysis of the reconstructed fermentation-associated MAGs revealed an assortment of genes typically expected in lactic acid bacteria involved in wine fermentation, as well as genes involved in the production of wine spoilage compounds, especially in species typically viewed today as less desirable bacteria. Overall, our analysis brings a new appreciation of winemaking in Roman Judea and enriches our understanding of Roman accounts of flavouring wine with different herbs and aromatics, which may have been performed in part to mask the off-flavour compounds produced by bacterial wine spoilage genes.

Acknowledgements:

Werner Siemens Foundation (PALEOBIOTECHNOLOGY, funding M.B. and C.W.) and Deutsche Forschungsgemeinschaft (Balance of the Microverse, EXC 2051 #390713860, funding M.B. and C.W.)

References:

  1. Porat, R., Kalman, Y., Chachy, R., terem, shulamit, Bar-Natan, R., Ecker, A., Ben-Gedalya, T., Drori, E., & Weiss, E. (2018). Herod’s Royal Winery and Wine Storage Facility in the Outer Structure of the Mountain Palace-Fortress at Herodium. Qadmoniot (156, 106–1)
  2. Orlando, L., Allaby, R., Skoglund, P., Der Sarkissian, C., Stockhammer, P. W., Ávila-Arcos, M. C., Fu, Q., Krause, J., Willerslev, E., Stone, A. C., & Warinner, C. (2021). Ancient DNA analysis. Nature Reviews Methods Primers, 1(1), 14, DOI 10.1038/s43586-020-00011-0

DOI:

Publication date: October 3, 2023

Issue: ICGWS 2023

Type: Article

Authors

Maxime Borry1,2, Tziona Ben Gedalya3, Herodion Expedition4, Alexander Herbig1, Christina Warinner1,5,6

1Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
2Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
3Eastern R&D Center, Ariel University, Ariel, Israel
4Hebrew University
5Faculty of Biological Sciences, Friedrich-Schiller University, Jena, Germany
6Department of Anthropology, Harvard University, Cambridge, MA, USA

Contact the author*

Keywords

roman, herod, judea, paleogenomics, metagenomics, genome, bacteria, ancient DNA

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Biotic and abiotic factors affecting physiological aspects underlying vegetative vigour in two commercial grapevine varieties

Grapevine vigour, defined as the propensity to assimilate, store and/or use non-structural sugars for allowing fast growth of shoots and producing large canopies[1], is crucial to optimize vineyard management. Recently, a model has been proposed for predicting the vigor of young grapevines through the measurement of the vegetative growth and physiological parameters, such as water status and gas exchange[2]. Our objectives were (1) to explore the influence of the association of two grapevine varieties (Tempranillo and Cabernet Sauvignon, grafted onto R110 rootstocks) with arbuscular mycorrhizal fungi (AMF) on the vegetative vigour of young plants; and (2) to assess the effect of environmental factors linked to climate change on the vegetative vigour of Cabernet Sauvignon.

High-throughput screening of physical-mechanical berry skin traits facilitates targeted selection of breeding material with resistance to Botrytis bunch rot and grape sunburn

The ongoing climate change implies an increasing mean air temperature, which is signified by weather extremes or sudden changes between drought and local heavy rainfalls. These changing conditions are especially challenging for the established grapevine varieties growing under cool climate conditions due to an increased risk for fungal diseases like downy mildew (DM) and Botrytis bunch rot (BBR) as well as for grape sunburn. To meet that demand, the scope of most grapevine breeding programs is the selection of mildew fungus-resistant and climatic adapted grapevines with balanced, healthy yield and outstanding wine quality.

Perception, liking and emotional response of tropical fruit aromas in Chardonnay wines

Tropical fruit aromas in wines are thought to be important to wine consumers, although there is little research to confirm this statement. With so many wine styles available, it has become important to understand the qualities that are desirable to consumers and how to achieve those qualities. Thiols and esters are compounds that have been found to cause tropical fruit aromas in chardonnay (ref). Fermentation temperature gradients and skin contact were found to increase these compounds using micro scale fermentations. This work aimed to scale up these fermentations/operations to determine if the desired tropical fruit aromas could still be achieved and if there is a perceivable difference in tropical fruit aromas, liking, and emotional response in the wines at the consumer level.

Grapevine adaptation to drought and resistance to Neofusicoccum parvum, causal agent of Botryosphaeria dieback

The sustainability of viticulture in response to climate change has been addressed mainly considering agronomic impacts, such as water management and diseases, either separately or together.
In grapevines, there is strong evidence that different genotypes respond differently to biotic and abiotic stresses. A screening was conducted on various local cultivars in response to drought and Neofusicoum parvum infection aiming to evaluate their susceptibility to abiotic stress and resistance to fungal diseases.

Biodiversity and biocontrol ability of Trichoderma natural populations in soil vineyards from Castilla y León region (Spain)

Trichoderma is a microorganism present in many agricultural soils and some of its species could be used as natural biological control agents. In this work, the presence of natural populations of Trichoderma was estimated in soil vineyard and its biocontrol capacity against Phaeoacremonium minimum, one of the main agent causals of grapevine trunk diseases instead of using pesticides. Moreover, physicochemical variables in soil such as pH, organic matter and nutrients were evaluated to determine a possible correlation to natural populations of Trichoderma.