terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Reconstructing ancient microbial fermentation genomes from the wine residues of Herod, Roman king of Judea

Reconstructing ancient microbial fermentation genomes from the wine residues of Herod, Roman king of Judea

Abstract

The fortress of the Herodium, built towards the end of the first century BCE/ante Cristo, on the orders of Herod the Great, Roman client king of Judea, attests the expansion of Roman influence in the eastern Mediterranean. During archaeological excavations of the Herodium in 2017[1], a winery was discovered on the ground floor of the palace, with an assortment of clay vessels in situ, including large dolia – clay fermentation vessels each capable of fermenting up to 300-400 L of wine. Thanks to the recent progresses in the field of paleogenomics[2], we could analyse the organic material consistent with grape pomace at the bottom of these vessels, by extracting and sequencing the DNA using shotgun metagenomics and targeted capture, aiming for enrichment of DNA from fermentation associated microbes. After controlling for environmental and modern contamination, we successfully reconstructed and analysed the high-quality metagenome-assembled genomes (MAGs) from a phylogenetic and functional perspective. The phylogenetic signal of these ancient fermentation bacteria confirmed both their ancient origin and their affiliation to bacteria associated with wine fermentation. Gene functional analysis of the reconstructed fermentation-associated MAGs revealed an assortment of genes typically expected in lactic acid bacteria involved in wine fermentation, as well as genes involved in the production of wine spoilage compounds, especially in species typically viewed today as less desirable bacteria. Overall, our analysis brings a new appreciation of winemaking in Roman Judea and enriches our understanding of Roman accounts of flavouring wine with different herbs and aromatics, which may have been performed in part to mask the off-flavour compounds produced by bacterial wine spoilage genes.

Acknowledgements:

Werner Siemens Foundation (PALEOBIOTECHNOLOGY, funding M.B. and C.W.) and Deutsche Forschungsgemeinschaft (Balance of the Microverse, EXC 2051 #390713860, funding M.B. and C.W.)

References:

  1. Porat, R., Kalman, Y., Chachy, R., terem, shulamit, Bar-Natan, R., Ecker, A., Ben-Gedalya, T., Drori, E., & Weiss, E. (2018). Herod’s Royal Winery and Wine Storage Facility in the Outer Structure of the Mountain Palace-Fortress at Herodium. Qadmoniot (156, 106–1)
  2. Orlando, L., Allaby, R., Skoglund, P., Der Sarkissian, C., Stockhammer, P. W., Ávila-Arcos, M. C., Fu, Q., Krause, J., Willerslev, E., Stone, A. C., & Warinner, C. (2021). Ancient DNA analysis. Nature Reviews Methods Primers, 1(1), 14, DOI 10.1038/s43586-020-00011-0

DOI:

Publication date: October 3, 2023

Issue: ICGWS 2023

Type: Article

Authors

Maxime Borry1,2, Tziona Ben Gedalya3, Herodion Expedition4, Alexander Herbig1, Christina Warinner1,5,6

1Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
2Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
3Eastern R&D Center, Ariel University, Ariel, Israel
4Hebrew University
5Faculty of Biological Sciences, Friedrich-Schiller University, Jena, Germany
6Department of Anthropology, Harvard University, Cambridge, MA, USA

Contact the author*

Keywords

roman, herod, judea, paleogenomics, metagenomics, genome, bacteria, ancient DNA

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Tackling the 3D root system architecture of grapevines: a new phenotyping pipeline based on photogrammetry

Plant roots fulfil important functions as they are responsible for the acquisition of water and nutrients, for anchorage and stability, for interaction with symbionts and, in some cases, for the storage of carbohydrates. These functions are associated with the Root System Architecture (RSA, i.e. the form and the spatial arrangement of the roots in the soil). The RSA results from several biological processes (elongation, ramification, mortality…) genetically determined but with high structural plasticity.

Yeast mannoprotein characterization and their effect on Oenococcus oeni and malolactic fermentation

Mannoproteins are released at the end of alcoholic fermentation due to yeast autolysis [1]. It has been described a positive effect of these molecules on lactic acid bacteria growth [2]. The main objective of this work was the characterization of different mannoproteins extracted from active dry yeast (ADY) and the assessment of their effect on Oenococcus oeni and malolactic fermentation (MLF).

New crossbreed winegrape genotypes cultivated under rainfed conditions in a semi-arid Mediterranean region

Traditional drought tolerant varieties such as Cabernet Sauvignon, Monastrell, and Syrah [1], have been used as parents in the grapevine breeding program initiated by the Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental (IMIDA) in 1997 [2]. This work presents the results of evaluating three new genotypes obtained from crosses between ‘Monastrell’ and ‘Cabernet Sauvignon’ (MC16 and MC80) and between ‘Monastrell’ and ‘Syrah’ (MS104), comparing their performance under conditions of water scarcity and high temperatures with that of their respective parental varieties. For this purpose, the six genotypes were cultivated under controlled irrigation conditions (60% ETc) and rainfed conditions.

Study of Spanish wine sensory analysis data over a 3-year period

This study presents an investigation based on sensory analysis data of Spanish wines with geographical indications collected over a three-year period. Sensory analysis plays a crucial role in assessing the quality, characteristics, and perception of wines. The trained tasting panel at Dolmar Laboratory, accredited for objective sensory evaluation of wines since 2016, has been tasting over 5000 wines. However, it is since 2021, when a computer application for tastings was developed, that the digitalization of data allows for detailed statistical analysis of the results.

Aromatic characterization of Moscato Giallo by GC-MS/MS and stable isotopic ratio analysis of the major volatile compounds

Among the Moscato grapes, Moscato Giallo is a winegrape variety characterized by a high content of free and glycosylated monoterpenoids, which gives very aromatic wines. The aromatic bouquet of Moscato Giallo is strongly influenced by the high concentration of linalool, geraniol, linalool oxides, limonene, α-terpineol, citronellol, HO-trienol, HO-diols, 8-Hydroxylinalool, geranic acid and β-myrcene, that give citrus, rose, and peach notes.