terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Detoxification capacities of heavy metals and pesticides by yeasts 

Detoxification capacities of heavy metals and pesticides by yeasts 

Abstract

Winegrowing is still characterized by the extensive use of chemical fertilizers and plant protection products, despite strong recommendations to limit these practices. A part of these xenobiotics and metals are then found in grape juice and wine, causing a major health concern, as well as negatively affecting the fermentation process. In recent years, there has been renewed interest in non-Saccharomyces yeasts. These species have a wide phenotypic diversity, which would be exploited to broaden the aromatic palette of wines. The potential of some of these species as a bio-protection agent, in pre-fermentation treatment, has also been established.

In addition to these characteristics, the heavy metal sorption capacities of these species are mentioned in the literature. Pre-fermentation treatment of the harvest with non-Saccharomyces (NS) yeasts therefore appears to be an alternative to the use of chemical inputs for the elimination of organic and inorganic xenobiotics from grape musts. However, our knowledge of the detoxification capacities of yeasts and their molecular and biochemical determinant is not yet sufficiently advanced to allow such methods to be developed and put into practice.  In this study, we investigated the detoxifying abilities of fourteen strains of Saccharomyces and non-Saccharomyces yeasts during the first stages of wine fermentation. Fermentations were conducted in synthetic must in the presence or absence of pesticides (mix of twenty pesticides commonly used in the vineyard) / metals (copper). The colorimetric determination of copper concentration throughout fermentation revealed that most Saccharomyces and non-Saccharomyces yeasts detoxify almost all copper in less than 48 hours. Regarding pesticides detoxification, quantified by GC-MS (Dubernet laboratory), a higher variability was observed, with a removal of 0% to 90% of the compound depending on the yeast strain and the pesticide. In conclusion, this study showed the great diversity of the capacity of yeasts to detoxify molecules used in vineyards to fight against diseases and/or parasites and the biotechnological potential that this represents.

DOI:

Publication date: October 3, 2023

Issue: ICGWS 2023

Type: Article

Authors

Tristan Jacqui1,2, Celine Raynal2, Amandine Deroite2, Vincent Bouazza3 , Carole Camarasa1

1SPO, INRAe, Institut Agro Montpellier, Montpellier, France
2LALLEMAND SAS, Blagnac, France

3Laboratoire Dubernet, Narbonne, France

Contact the author*

Keywords

non-Saccharomyces yeasts, wine quality, heavy metals, pesticides, detoxification

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Sugar accumulation disorder Berry Shrivel – from current knowledge towards novel hypothesis

In contrast to fruit and grape berry ripening, the biological processes causing ripening disorders are often much less understood, although shriveling disorders of fruits are manifold and contribute to yield losses and reduced fruit quality worldwide. Shrinking berries are a common feature for all shriveling disorders in grapevine although their timing of appearance during the berry ripening process and their underlying induction processes distinct them from each other. The sugar accumulation disorder Berry Shrivel (BS) is characterized by a suppression of sugar accumulation short after veraison resulting in berries low in sugar content and anthocyanins in berry skins, while the organic acid content is similar. Recent studies analyzed the biochemical, morphological and molecular processes affected in BS berries and linked early changes to the period of ripening onset [1,2].

Correlative study between degradation of rosé wine under accelerated conditions and under normal conditions

Several studies have tried to develop different methods to study the photodegradation of wine in an accelerated way, trying to elucidate the effect of light on the wine compounds[1]. In a previous study, our team developed a chamber that speeds up the photodegradation of rosé wine[2]. In the present work we have tried to establish a correlation between irradiation times in accelerated conditions and the natural exposure to the cycles of light that usually exist in markets or at home.

Exploring the prevalence of esca-induced leaf symptoms in French vineyards and the role of climate: a national scale analysis

Esca, a severe trunk disease affecting vineyards, is caused by fungal pathogens that induce wood necrosis and decay, leaf symptoms, yield losses, and potentially a rapid death of the vine. The prevalence of this disease varies across years, regions, cultivars, and plot ages. Despite its significance in understanding and predicting dieback risk in different vineyards, the role of climate in trunk diseases remains a relatively unexplored research area. While some studies have demonstrated the impact of certain climatic conditions on the prevalence of the disease, they often focus on a limited number of plots and yield conflicting results.We conducted a statistical analysis, using a Bayesian approach on a national database comprising prevalence data of esca from over 500 different plots in France, spanning the years 2003 to 2022 and encompassing various cultivars.

Adsorption of tetraconazole by organic residues and vineyard organically-amended soils 

Spain is the country with the largest wine-producing area in the EU and its productivity is largely controlled applying fungicides. However, residues of these compounds can move and contaminate surface and groundwater. The objective of this work was to evaluate the capacity of bioadsorbents from different origin to adsorb and immobilize tetraconazole by themselves or when applied as organic soil amendment, and to prevent soil and water contamination by this fungicide. The adsorption of tetraconazole by 3 organic residues: spent mushroom substrate (SMS), green compost (GC) and vine pruning sawdust (VP), as well as by vineyard soils unamended and amended individually with these residues at 1.5% (w/w) was evaluated using the batch equilibrium technique.

Plastic debris at vines: carriers of pollutants in the environment?

Modern agriculture employs large amounts of plastics, such as mulching and greenhouse films, thermal covers, plant protection tubes and tying tape. The latter two types are very common in viticulture. Guard tubes are employed to protect young vines from mechanic and atmospheric damage, whilst polymeric tying tape has replaced natural-origin materials to hold the canopy of vines. Both materials are made on synthetic polymers, which include a range of additives to improve their environmental stability remaining in the environment of vineyards for years. During this time, they are exposed to the range of pesticides (fungicides, insecticides and in a lesser extend herbicides) applied to vines.