terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Detoxification capacities of heavy metals and pesticides by yeasts 

Detoxification capacities of heavy metals and pesticides by yeasts 

Abstract

Winegrowing is still characterized by the extensive use of chemical fertilizers and plant protection products, despite strong recommendations to limit these practices. A part of these xenobiotics and metals are then found in grape juice and wine, causing a major health concern, as well as negatively affecting the fermentation process. In recent years, there has been renewed interest in non-Saccharomyces yeasts. These species have a wide phenotypic diversity, which would be exploited to broaden the aromatic palette of wines. The potential of some of these species as a bio-protection agent, in pre-fermentation treatment, has also been established.

In addition to these characteristics, the heavy metal sorption capacities of these species are mentioned in the literature. Pre-fermentation treatment of the harvest with non-Saccharomyces (NS) yeasts therefore appears to be an alternative to the use of chemical inputs for the elimination of organic and inorganic xenobiotics from grape musts. However, our knowledge of the detoxification capacities of yeasts and their molecular and biochemical determinant is not yet sufficiently advanced to allow such methods to be developed and put into practice.  In this study, we investigated the detoxifying abilities of fourteen strains of Saccharomyces and non-Saccharomyces yeasts during the first stages of wine fermentation. Fermentations were conducted in synthetic must in the presence or absence of pesticides (mix of twenty pesticides commonly used in the vineyard) / metals (copper). The colorimetric determination of copper concentration throughout fermentation revealed that most Saccharomyces and non-Saccharomyces yeasts detoxify almost all copper in less than 48 hours. Regarding pesticides detoxification, quantified by GC-MS (Dubernet laboratory), a higher variability was observed, with a removal of 0% to 90% of the compound depending on the yeast strain and the pesticide. In conclusion, this study showed the great diversity of the capacity of yeasts to detoxify molecules used in vineyards to fight against diseases and/or parasites and the biotechnological potential that this represents.

DOI:

Publication date: October 3, 2023

Issue: ICGWS 2023

Type: Article

Authors

Tristan Jacqui1,2, Celine Raynal2, Amandine Deroite2, Vincent Bouazza3 , Carole Camarasa1

1SPO, INRAe, Institut Agro Montpellier, Montpellier, France
2LALLEMAND SAS, Blagnac, France

3Laboratoire Dubernet, Narbonne, France

Contact the author*

Keywords

non-Saccharomyces yeasts, wine quality, heavy metals, pesticides, detoxification

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Influence of irrigation frequency on berry phenolic composition of red grape varieties cultivated in four spanish wine-growing regions

The global warming phenomenon involves the frequency of extreme meteorological events accompanied by a change in rainfall distribution. Irrigation frequency (IF) affects the spatial and temporal soil water distribution but its effects on the phenolic composition of the grape have been scarcely studied. The aim of this work was to evaluate the effects of four deficit irrigation frequencies of 30 % ETo: one irrigation per day (T01), two irrigations per week (T03), one irrigation per week (T07) and one irrigation every two weeks (T15) on berry phenolic composition at harvest.

Evaluation of physiological properties of grapevine clones of ‘Tempranillo’ and ‘Graciano’ in DOCa Rioja (Spain)

In order to avoid the loss of grapevine intra-varietal diversity of DOCa Rioja grape varieties, Regional Government of La Rioja established a germplasm bank with more than 1.600 accessions, whose origin lies in the prospecting and sampling of ancient vineyards located throughout the whole region. 30 clones of Tempranillo and 13 clones of Graciano were preselected and multiplied in a new vineyard for further observations. The aim of this work is to describe the first results from the physiological characterization by an optical sensor of these preselected clones, which constitute the base of a new clonal selection that aims to increase the range of available certified clones and to improve the adaptation of these varieties to future objectives and environmental conditions.

Effect on the grape and wine characteristics of cv. Tempranillo at 3 production levels

The vineyard has experienced a general increase in yields mainly due to the elevated use of technology which caused a quality loss of grapes in more than one case. A large percentage of the Spanish vineyard is covered by a Denomination of Origin which limits the productive level of the vineyards as one of its regulations. The maximum production limit is a variable characteristic of each vineyard and is not usually regulated by agronomic criteria, and this explains the fact that each vineyard can reach high quality with a totally different yield from that set by the Denomination of Origin.

Genetic variation among wild grapes native to Japan

Domesticated grapes are assumed to have originated in the Middle East. However, a considerable number of species are native in East Asian countries such as China, Korea and Japan as well. Evidence suggests that a total of seven species and eight varieties have been found to be native to Japan. A wide level variation in morphology, genetic and fruit composition exist in wild grape native to Japan.

Glucosidase and esterase salivary activities and their involvement in consumer’s wine sensory perception and liking

Wine flavour is the integration of distinct physiologically defined sensory systems that combine taste, aroma and trigeminal sensations, and it is a key determinant factor for the acceptance of wine by consumers. Volatile compounds, are important contributors to wine flavour, specially to aroma. These small and low-boiling point compounds are easily released into the air allowing to enter and move within the nasal or oral cavities where they can bind the olfactory receptors. Additionally, wine also contains aroma precursors, which are non-volatile compounds, but that can be broken down releasing volatile odorants. During wine tasting, all these chemicals (volatiles and non-volatiles) can be submitted to the action of salivary enzymes.