terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Detoxification capacities of heavy metals and pesticides by yeasts 

Detoxification capacities of heavy metals and pesticides by yeasts 

Abstract

Winegrowing is still characterized by the extensive use of chemical fertilizers and plant protection products, despite strong recommendations to limit these practices. A part of these xenobiotics and metals are then found in grape juice and wine, causing a major health concern, as well as negatively affecting the fermentation process. In recent years, there has been renewed interest in non-Saccharomyces yeasts. These species have a wide phenotypic diversity, which would be exploited to broaden the aromatic palette of wines. The potential of some of these species as a bio-protection agent, in pre-fermentation treatment, has also been established.

In addition to these characteristics, the heavy metal sorption capacities of these species are mentioned in the literature. Pre-fermentation treatment of the harvest with non-Saccharomyces (NS) yeasts therefore appears to be an alternative to the use of chemical inputs for the elimination of organic and inorganic xenobiotics from grape musts. However, our knowledge of the detoxification capacities of yeasts and their molecular and biochemical determinant is not yet sufficiently advanced to allow such methods to be developed and put into practice.  In this study, we investigated the detoxifying abilities of fourteen strains of Saccharomyces and non-Saccharomyces yeasts during the first stages of wine fermentation. Fermentations were conducted in synthetic must in the presence or absence of pesticides (mix of twenty pesticides commonly used in the vineyard) / metals (copper). The colorimetric determination of copper concentration throughout fermentation revealed that most Saccharomyces and non-Saccharomyces yeasts detoxify almost all copper in less than 48 hours. Regarding pesticides detoxification, quantified by GC-MS (Dubernet laboratory), a higher variability was observed, with a removal of 0% to 90% of the compound depending on the yeast strain and the pesticide. In conclusion, this study showed the great diversity of the capacity of yeasts to detoxify molecules used in vineyards to fight against diseases and/or parasites and the biotechnological potential that this represents.

DOI:

Publication date: October 3, 2023

Issue: ICGWS 2023

Type: Article

Authors

Tristan Jacqui1,2, Celine Raynal2, Amandine Deroite2, Vincent Bouazza3 , Carole Camarasa1

1SPO, INRAe, Institut Agro Montpellier, Montpellier, France
2LALLEMAND SAS, Blagnac, France

3Laboratoire Dubernet, Narbonne, France

Contact the author*

Keywords

non-Saccharomyces yeasts, wine quality, heavy metals, pesticides, detoxification

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Effect of rising atmospheric CO2 levels on grapevine yield and composition by the middle of the 21st century: what can we learn from the VineyardFACE?

Atmospheric CO2 levels have been rising continuously since the industrial revolution, affecting crop physiology, yield and quality of harvest products, and grapevine is no exception [1]. Most of previously reported studies used potted plants in controlled environments, and explored grapevine response to relatively high CO2 levels, 700 ppm or more. The vineyardFACE, established in Geisenheim in 2012, uses a free air carbon dioxide enrichment (FACE) system to simulate a moderate (ambient +20%) increase in atmospheric CO2 in a vineyard planted with cvs. Cabernet-Sauvignon and Riesling grafted on rootstock 161-49 Couderc and SO4, respectively.

Irrigation frequency in four grapevine red varieties in Spain. Effect on must volatile composition

The irrigation water management in the vineyard is a crucial aspect to obtain sustainable quality production over time. Previous studies have set the water requirements to be applied in the vineyard at 30 % of the reference evapotranspiration (ET0), although there are no studies that settle the effects of the frequency of irrigation application on red varieties in Spain. The present study contemplates the application of deficit irrigation (30 % ET0) applying a weekly dose in a single irrigation (T07) or in two irrigation events (T03) per week. The study has been carried out in 2021-2022 with four red varieties in different Spanish wine regions: Garnacha Tinta (Badajoz), Tempranillo (Valladolid), Syrah (Albacete) and Mencía (Lugo). The effects of irrigation frequency on must volatile composition have been evaluated through GC-MS.

The generation of suspended cell wall material may limit the effect of ultrasound in some varieties

The disruptive effect exerted by high-power ultrasound (US) on plant cell walls, natural barriers to the diffusion of compounds of interest during the maceration of red wines, is established as the reason behind the chromatic improvement that its treatment causes. However, sometimes this improvement is not observed, especially with short maceration times. The presence of a high quantity of suspended cell wall material, which formation is favored by the sonication, could be the cause of this lack of positive results since this cell wall material has a high affinity for phenolic compounds.

Effect of drought on grapevine wood fungal pathogen communities using a metatranscriptomics approach

Crops are facing increasing biotic and abiotic stress pressures due to global changes. However, trade-off mechanisms between these stresses and the underlying physiological processes are still poorly understood, especially in perennial crop species. To better understand these trade-offs, we studied the effect of drought on grapevine (Vitis vinifera) physiology and esca-related wood fungal communities. Esca is a vascular disease caused by a community of wood-infecting pathogenic fungi, and characterized by trunk necrosis, leaf scorch symptoms, yield losses, and mortality.

Genetic prospecting of rainfed viticulture in the region with the largest cultivated area in Chile

The Maule region hosts up to a third of the total area of vineyards in Chile, in an environment where ancient practices inherited from the colonial past coexist with modernity and dynamism that include technified irrigation and fine vines. In the dry land of Maule there is a viticulture that has subsisted with ancient vines and traditions transmitted over generations, and there is little clarity about the origin and classification of the Maule viticulture, giving rise to the use of different concepts as synonyms to describe the ancient, minority, patrimonial or Criollas vines. In order to characterize and protect the ancient material, we studied the genetic diversity of a territorial collection that covers 80% of the communes of the region, prioritizing plants established more than 40-60 years ago.