terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Can yeast cells sense other yeasts beyond competition interactions?

Can yeast cells sense other yeasts beyond competition interactions?

Abstract

The utilization of non-Saccharomyces yeasts in the wine industry has increased significantly in recent years. Alternative species need commonly be employed in combination with Saccharomyces cerevisiae to avoid stuck fermentation, or microbial spoilage. The employment of more than one yeast starter can lead to interactions between different species with an impact on the outcome of wine fermentation. Previous studies[1] demonstrated that S. cerevisiae elicits transcriptional responses with both shared and species-specific features in co-culture with other yeast species. We tested the hypothesis that extracellular vesicles (EVs) play a role as mediators in these interactions. For this purpose, we exposed S. cerevisiae cultures to EVs from Metschnikowia pulcherrima. Through RNAseq, we evaluated the impact of these EVs on the physiology of S. cerevisiae, comparing the results with the response of S. cerevisiae to metabolically active M. pulcherrima cells under identical conditions. The analysis revealed a significant overlap in the transcriptional responses induced in S. cerevisiae by both M. pulcherrima cells and EVs. Notably, both stimuli upregulated the genes related to glycolysis and ribosomal activity, while repressing autophagic genes. These findings provide evidence that S. cerevisiae actively responds to competing species under conditions resembling those found in winemaking. Furthermore, it offers experimental support for the hypothesis that EVs take part in interspecies recognition.

Acknowledgements: This work was funded by the Spanish Government through grant PID2019-105159RB-I00 funded by MCIN/AEI/10.13039/501100011033, grant BES-2016-077557, and grant PRE2020-093420 funded by MCIN/AEI/10.13039/501100011033 and by “ESF Investing in your future” (training contracts for AM and MM).

References:

1)  Curiel, J.A., Morales, P., Gonzalez, R., Tronchoni, J., 2017. Different non-Saccharomyces yeast species stimulate nutrient consumption in S. cerevisiae mixed cultures. Front. Microbiol. 8, 2121. https://doi.org/10.3389/fmicb.2017.02121.

DOI:

Publication date: October 3, 2023

Issue: ICGWS 2023

Type: Article

Authors

Miguel Mejías Ortiz1*, Ana Mencher1, Jordi Tronchoni2, Ramon Gonzalez1, Pilar Morales1

1Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de la Rioja, Universidad de La Rioja), Logroño, La Rioja, Spain
2Universidad Internacional de Valencia, Valencia, Spain

Contact the author*

Keywords

extracellular vesicles, yeast interactions, transcriptomics, winemaking

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Evaluation of terroir suitability for vine cultivation in new areas using geographic multi-criteria decision support

Based on historical vine cultivation, the recent development of wine production in Drama wine region (Greece) has led to vine cultivation expansion of white and red varieties. The current cultivation of 500 ha of vineyards is expected to increase in the coming years. Natural terroir units (NTU) have been designed recently to support the production of high quality wines in the region [1]. The aim of this work is to evaluate the relevancy of the proposed NTUs regarding their suitability to produce wines of specific sensorial identity, and to provide guidelines for correct site selection for the expanding wine industry of the region.

Molecularly imprinted polymers: an innovative strategy for harvesting polyphenoles from grape seed extracts

Multiple sclerosis (MS) is a multifactorial autoimmune disease associating demyelination and axonal degeneration developing in young adults and affecting 2–3 million people worldwide. Plant polyphenols endowed with many therapeutic benefits associated with anti-inflammatory and antioxidant properties represent highly interesting new potential therapeutic strategies. We recently showed the safety and high efficiency of grape seed extract (GSE), a complex mixture of polyphenolics compounds comprising notably flavonoids and proanthocyanidins, in an experimental autoimmune encephalomyelitis (EAE) mouse model of MS.

Under-vine management effects on grapevine vegetative growth, gas exchange and rhizosphere microbial diversity

The use of cover crops under the vines might be an alternative to the use of herbicides or tillage, improving grapevine quality and soil characteristics. The aim of this research was to study the implications of different management strategies of the soil under the vines (herbicide, cultivation or cover crops) on grapevine growth, water and nutritional status, gas exchange parameters and belowground microbial communities.
The experimental design consisted in 4 treatments applied on 35L-potted Tempranillo vegetative grapevines with 10 replicates each grown in an open-top greenhouse in 2022 and 2023. Treatments included two cover crop species (Trifolium fragiferum and Bromus repens), herbicide (glyphosate al 36%) and an untreated control.

Adsorption of tetraconazole by organic residues and vineyard organically-amended soils 

Spain is the country with the largest wine-producing area in the EU and its productivity is largely controlled applying fungicides. However, residues of these compounds can move and contaminate surface and groundwater. The objective of this work was to evaluate the capacity of bioadsorbents from different origin to adsorb and immobilize tetraconazole by themselves or when applied as organic soil amendment, and to prevent soil and water contamination by this fungicide. The adsorption of tetraconazole by 3 organic residues: spent mushroom substrate (SMS), green compost (GC) and vine pruning sawdust (VP), as well as by vineyard soils unamended and amended individually with these residues at 1.5% (w/w) was evaluated using the batch equilibrium technique.

Influence of p-Coumaric Acid and Micronutrients on Growth and 4-Ethylphenol Production by Brettanomyces bruxellensis

The wine spoilage caused by Brettanomyces bruxellensis is one of the global concerns for winemakers. Detecting the presence of B. bruxellensis using routine laboratory culture techniques becomes challenging when cells enter the viable but not culturable (VBNC) state. This study aims to investigate the impact of p-coumaric acid (a volatile phenol precursor) and micronutrients on B. bruxellensis’ culturability, viability, and volatile phenol production under sulfite stress. In red wine, exposure to a high sulfite dose (100.00 mg L-1 potassium metabisulfite) resulted in immediate cell death, followed by a recovery of culturability after two weeks.