terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Can yeast cells sense other yeasts beyond competition interactions?

Can yeast cells sense other yeasts beyond competition interactions?

Abstract

The utilization of non-Saccharomyces yeasts in the wine industry has increased significantly in recent years. Alternative species need commonly be employed in combination with Saccharomyces cerevisiae to avoid stuck fermentation, or microbial spoilage. The employment of more than one yeast starter can lead to interactions between different species with an impact on the outcome of wine fermentation. Previous studies[1] demonstrated that S. cerevisiae elicits transcriptional responses with both shared and species-specific features in co-culture with other yeast species. We tested the hypothesis that extracellular vesicles (EVs) play a role as mediators in these interactions. For this purpose, we exposed S. cerevisiae cultures to EVs from Metschnikowia pulcherrima. Through RNAseq, we evaluated the impact of these EVs on the physiology of S. cerevisiae, comparing the results with the response of S. cerevisiae to metabolically active M. pulcherrima cells under identical conditions. The analysis revealed a significant overlap in the transcriptional responses induced in S. cerevisiae by both M. pulcherrima cells and EVs. Notably, both stimuli upregulated the genes related to glycolysis and ribosomal activity, while repressing autophagic genes. These findings provide evidence that S. cerevisiae actively responds to competing species under conditions resembling those found in winemaking. Furthermore, it offers experimental support for the hypothesis that EVs take part in interspecies recognition.

Acknowledgements: This work was funded by the Spanish Government through grant PID2019-105159RB-I00 funded by MCIN/AEI/10.13039/501100011033, grant BES-2016-077557, and grant PRE2020-093420 funded by MCIN/AEI/10.13039/501100011033 and by “ESF Investing in your future” (training contracts for AM and MM).

References:

1)  Curiel, J.A., Morales, P., Gonzalez, R., Tronchoni, J., 2017. Different non-Saccharomyces yeast species stimulate nutrient consumption in S. cerevisiae mixed cultures. Front. Microbiol. 8, 2121. https://doi.org/10.3389/fmicb.2017.02121.

DOI:

Publication date: October 3, 2023

Issue: ICGWS 2023

Type: Article

Authors

Miguel Mejías Ortiz1*, Ana Mencher1, Jordi Tronchoni2, Ramon Gonzalez1, Pilar Morales1

1Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de la Rioja, Universidad de La Rioja), Logroño, La Rioja, Spain
2Universidad Internacional de Valencia, Valencia, Spain

Contact the author*

Keywords

extracellular vesicles, yeast interactions, transcriptomics, winemaking

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Culturable microbial communities associated with the grapevine soil in vineyards of La Rioja, Spain

The definition of soil health is complex due to the lack of agreement on adequate indicators and to the high variability of global soils. Nevertheless, it has been widely used as synonymous of soil quality for more than one decade, and there is a consensus warning of scientists that soil quality and biodiversity loss are occurring due to the traditional intensive agricultural practices.
In this work we monitored a set of soil parameters, both physicochemical and microbiological, in an experimental vineyard under three different management and land use systems: a) addition of external organic matter (EOM) to tilled soil; b) no tillage and plant cover between grapevine rows, and c) grapevines planted in rows running down the slope and tilled soil.

Organic mulches slightly influence wine phenolic composition and sensorial properties

Grapevines have traditionally been grown in semi-arid areas, but viticulture is now compromised by climate change. Therefore, it is necessary to implement environmentally friendly viticulture practices to adapt grapevines to current climatic conditions. In this context, organic mulches offer many benefits, such as reduced soil erosion and increased organic matter, soil water content and crop productivity. However, these practices must not compromise grape and wine quality. Therefore, the objective of this study was to evaluate the effect on wine physicochemical and phenolic composition and sensorial properties of different soil management practices on the vine row. Over four years, five soil treatments were examined in two different vineyards.

The environmental footprint of selected vineyard management practices: A case study from Logroño (La Rioja) Spain

Viticulture is globally important for socioeconomic and environmental reasons. The EU is globally leading grape and wine production, and Spain is among the top grape and wine producers. As climate change affects viticulture, mitigation and adaptation are crucial for protecting grape production. In this research work, data on viticultural management practices such as soil cultivation, irrigation, energy, machinery, plant protection and the use of fertilizers from vineyards located in Logroño (La Rioja) have been obtained.

Application of DEXI PM Vigne sustainability tool to the assessment of alternative vineyard protection strategies

Implementing alternative grapevine systems that incorporate sustainable strategies and innovative farming practices is essential. However, we lack tools for measuring the impact of these new practices on the overall sustainability of vineyards. DEXi PM Vigne (Gary et al., 2015) is a tool developed for ex ante assessment of the sustainability of grapevine cropping systems, from the plot to the farm scale. In the present study, we focused on implementing new strategies of integrated crop protection management with limited pesticide use in vineyards.

Effect of two water deficit regimes on the agronomic response of 12 grapevine varieties cultivated in a semi-arid climate

The Mediterranean basin is one of the most vulnerable regions to Climate Change effects. According to unanimous forecasts, the vineyards of Castilla-La Mancha will be among the most adversely affected by rising temperatures and water scarcity during the vine’s vegetative period. One potential strategy to mitigate the negative impacts of these changes involves the identification of grapevine varieties with superior water use efficiency, while ensuring satisfactory yields and grape quality.