terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Can yeast cells sense other yeasts beyond competition interactions?

Can yeast cells sense other yeasts beyond competition interactions?

Abstract

The utilization of non-Saccharomyces yeasts in the wine industry has increased significantly in recent years. Alternative species need commonly be employed in combination with Saccharomyces cerevisiae to avoid stuck fermentation, or microbial spoilage. The employment of more than one yeast starter can lead to interactions between different species with an impact on the outcome of wine fermentation. Previous studies[1] demonstrated that S. cerevisiae elicits transcriptional responses with both shared and species-specific features in co-culture with other yeast species. We tested the hypothesis that extracellular vesicles (EVs) play a role as mediators in these interactions. For this purpose, we exposed S. cerevisiae cultures to EVs from Metschnikowia pulcherrima. Through RNAseq, we evaluated the impact of these EVs on the physiology of S. cerevisiae, comparing the results with the response of S. cerevisiae to metabolically active M. pulcherrima cells under identical conditions. The analysis revealed a significant overlap in the transcriptional responses induced in S. cerevisiae by both M. pulcherrima cells and EVs. Notably, both stimuli upregulated the genes related to glycolysis and ribosomal activity, while repressing autophagic genes. These findings provide evidence that S. cerevisiae actively responds to competing species under conditions resembling those found in winemaking. Furthermore, it offers experimental support for the hypothesis that EVs take part in interspecies recognition.

Acknowledgements: This work was funded by the Spanish Government through grant PID2019-105159RB-I00 funded by MCIN/AEI/10.13039/501100011033, grant BES-2016-077557, and grant PRE2020-093420 funded by MCIN/AEI/10.13039/501100011033 and by “ESF Investing in your future” (training contracts for AM and MM).

References:

1)  Curiel, J.A., Morales, P., Gonzalez, R., Tronchoni, J., 2017. Different non-Saccharomyces yeast species stimulate nutrient consumption in S. cerevisiae mixed cultures. Front. Microbiol. 8, 2121. https://doi.org/10.3389/fmicb.2017.02121.

DOI:

Publication date: October 3, 2023

Issue: ICGWS 2023

Type: Article

Authors

Miguel Mejías Ortiz1*, Ana Mencher1, Jordi Tronchoni2, Ramon Gonzalez1, Pilar Morales1

1Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de la Rioja, Universidad de La Rioja), Logroño, La Rioja, Spain
2Universidad Internacional de Valencia, Valencia, Spain

Contact the author*

Keywords

extracellular vesicles, yeast interactions, transcriptomics, winemaking

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Possible methods of adaptation to the effects of climate change in the Tokaj Wine Region 

Viticulture’s adaptation to the harmful effects of climate change is globally the biggest challenge of the near future. Short, extremely intensive rainfalls and longer periods of drought are getting more frequent in the Tokaj Wine Region, where the majority of the vineyards are cultivated on steep slopes. Hence, erosion has high risk, especially when combined with the loess-based soils on about ten percent of the region. The environmentally beneficial cover crop and mulch usage can effectively reduce the risk of erosion, according to research done by the Tokaj Wine Region Research Institute of Viticulture and Oenology.

Effects of different soil types and soil management on greenhouse gas emissions 

Soil is important in the carbon cycle and the dynamics of greenhouse gases (CO2, CH4 and N2O). Key soil characteristics, such as organic matter content, texture, structure, pH and microbial activity, play a determining role in GHG emissions[1]. The objective of the study is to delimit different types of soil, with different soil management and to be able to verify the differences in CO2, CH4 and N2O emissions. The study was carried out in a vineyard of Bodegas Campo Viejo in Logroño (La Rioja), whose plant material is Vitis vinifera L. cv. Tempranillo.

Detoxification capacities of heavy metals and pesticides by yeasts 

Winegrowing is still characterized by the extensive use of chemical fertilizers and plant protection products, despite strong recommendations to limit these practices. A part of these xenobiotics and metals are then found in grape juice and wine, causing a major health concern, as well as negatively affecting the fermentation process. In recent years, there has been renewed interest in non-Saccharomyces yeasts. These species have a wide phenotypic diversity, which would be exploited to broaden the aromatic palette of wines.

Exploring intra-vineyard variability with sensor- and molecular-based approaches 

The application of remote and proximal sensing is a fast and efficient method to monitor grapevine vegetative and physiological parameters and is considered valuable to derive information on associated yield and quality traits in the vineyard. Further details can be obtained by the application of molecular analysis at the gene expression level aiming at elucidating how pathways controlling the formation of different grape quality traits are influenced by spatial variability. This work aims at evaluating intra-vineyard variability in grape composition at harvest and at comparing this with remotely sensed canopy vegetation data and molecular-based approaches.

Identification of loci associated with specialised metabolites in Vitis vinifera

Secondary (or specialised) metabolites such as terpenes and phenolic compounds are produced by plants for various roles which include defence against pathogens and herbivores, protection against abiotic stress, and plant signalling. Additionally, these metabolites influence grapevine quality traits such as colour, aroma, taste, and nutritional value. However, the biosynthesis of these metabolites is often complex and controlled by multiple genes which in grapevine are predominantly uncharacterised.