terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 The combined use of Lachancea thermotolerans and lactic bacteria in wine technology

The combined use of Lachancea thermotolerans and lactic bacteria in wine technology

Abstract

The production of most red wines that are sold involves an alcoholic fermentation carried out by yeasts of the Saccharomyces genus, and a subsequent fermentation carried out by lactic bacteria of the Oenococus oeni species after the first one is fully completed. However, the traditional process can face complications, which can be more likely in grape juices with high levels of sugar and pH. Because of climate change, these situations are more frequent in the wine industry. The main hazards in those scenarios are halts or delays in the alcoholic fermentation or the growth of unwanted bacteria while the alcoholic fermentation is not done yet and the wine still has residual sugars. The study suggests a new alternative that provides a solution or lowers the risk of those scenarios while raising acidity, which is another serious issue of warm wine regions. The alternative involves the combined use of Lachancea thermotolerans to lower the pH of musts that have a deficiency of acidity, Lactiplantibacillus plantarum to attain malic acid stability during the initial stages of alcoholic fermentation, and Saccharomyces bayanus to finish the alcoholic fermentation in challenging wines of high potential alcohol degree of over 15% (v/v). The new biotechnology suggested produced wines with higher final levels in lactic acid, glycerol, color intensity, ethyl lactate and 2-phenyl ethyl acetate than the traditional methodology where Saccharomyces genus performs alcoholic fermentation and then Oenococus oeniperforms malolactic fermentation. Moreover, the new alternative produced wines with lower levels in ethanol, pH, acetic acid, ethyl acetate, diacetyl and 1-propanol than the classic method.

References:

1)  Urbina A. et al. (2020) The Combined Use of Lachancea thermotolerans and Lactiplantibacillus plantarum (former Lactobacillus plantarum) in Wine Technology. Foods., 10(6): 1356-1365, DOI 10.3390/foods10061356
2)  Vicente J. et al. (2022) Biological management of acidity in wine industry: A review. Int. J. Food. Microbiol., 375: 109726, DOI 10.1016/j.ijfoodmicro.2022.109726

DOI:

Publication date: October 3, 2023

Issue: ICGWS 2023

Type: Article

Authors

Santiago Benito1*, Javier Vicente2, Wendu Tesfaye1, Eva Navascués1,3, Fernando Calderón1, Antonio Santos2, Domingo Marquina2       

1 Department of Chemistry and Food Technology, Polytechnic University of Madrid, 28040 Madrid, Spain
2 Department of Genetics, Physiology and Microbiology, Unit of Microbiology, Complutense University of Madrid, 28040 Madrid, Spain
3 Pago de Carraovejas, S.L.U., 47300 Penafiel, Valladolid, Spain

Contact the author*

Keywords

Lachancea thermotolerans, Lactiplantibacillus plantarum, Saccharomyces, Oenococus oeni, malic acid, lactic acid

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Evaluation of interception traps for capture of Xylotrechus arvicola (Coleoptera: Cerambycidae) in vineyards varieties from Protected Denomination of Origin León

Xylotrechus arvicola (Coleoptera: Cerambycidae) is a pest in vineyards (Vitis vinifera) in the main Spain wine-producing regions with Protected Denomination of Origin (PDO). The action of the larvae, associated to the spreading of wood fungi, causes damage especially in important varieties of V. vinifera. X. arvicola females lay eggs concentrated in cracks or under the rhytidome in the wood vines, which allows the emerging larvae to get into the wood and make galleries inside the plant being then necessary to prune intensively or to pull up the bored plants (1). The objective of the study was to evaluate captures of X. arvicola insects in five varieties of V. vinifera in PDO León.

Lipids at the crossroads of protection: lipid signalling in grapevine defence mechanisms

Understanding grapevine molecular processes and the underlying defence responses is vital for developing sustainable disease control strategies. Lipid signalling pathways, involving the synthesis and degradation of lipid molecules, have emerged as a key regulator in plant defence against pathogens. This study aims to elucidate the role of fatty acids and lipid signalling in grapevine’s defence response to P. viticola infection. The expression of lipid metabolism-related as well as lipid signalling genes was analysed, by qPCR, in three grapevine genotypes: Chardonnay (susceptible), Regent (tolerant) with Rpv3-1 resistance loci, and Sauvignac (resistant) harbouring a pyramid of Rpv12 and Rpv3-1 resistance loci.

Extreme vintages affect grape varieties differently: a case study from a cool climate wine region

Eger wine region is located on the northern border of grapevine cultivation zone. In the cool climate, terroir selection is one of the foundations of quality wine making. However, climate change will have a significant impact on these high value-added vineyards. This study presents a case study from 2021 and 2022 with the investigation of three grape varieties (Kadarka, Syrah, Furmint). The experiment was conducted in a steep-sloped vineyard (Nagy-Eged hill) with a southern exposure.

Exploring relationships among grapevine chemical and physiological parameters and mycobiome composition under drought stress

Improving our knowledge on biotic and abiotic factors that influence the composition of the grapevine mycobiome is of great agricultural significance, due to potential effects on plant health, productivity, and wine characteristics. Among the various environmental factors affecting the morphological, physiological, biochemical and molecular attributes of grapevine, drought stress is one of the most severe, becoming increasingly an issue worldwide.

Volatilome in grapevine leaves is defined by the variety and modulated by mycorrhizal symbiosis

Volatile organic compounds (VOCs) constitute a diverse group of secondary metabolites key for the communication of plants with other organisms and for their adaptation to environmental and biotic stresses. The emission of these compounds through leaves is also affected by the interaction of plants with symbiotic microorganisms, arbuscular mycorrhizal fungi (AMF) among them [1]. Our objective was to know the concentration and profile of VOCs emitted by the leaves of two grapevine varieties (Tempranillo, T, and Cabernet Sauvignon, CS, grafted onto R110 rootstocks), inoculated or not with a consortium of five AMF (Rhizophagus irregularis, Funneliformis mosseae, Septoglomus deserticola, Claroideoglomus claroideum and C. etunicatum).