terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 The combined use of Lachancea thermotolerans and lactic bacteria in wine technology

The combined use of Lachancea thermotolerans and lactic bacteria in wine technology

Abstract

The production of most red wines that are sold involves an alcoholic fermentation carried out by yeasts of the Saccharomyces genus, and a subsequent fermentation carried out by lactic bacteria of the Oenococus oeni species after the first one is fully completed. However, the traditional process can face complications, which can be more likely in grape juices with high levels of sugar and pH. Because of climate change, these situations are more frequent in the wine industry. The main hazards in those scenarios are halts or delays in the alcoholic fermentation or the growth of unwanted bacteria while the alcoholic fermentation is not done yet and the wine still has residual sugars. The study suggests a new alternative that provides a solution or lowers the risk of those scenarios while raising acidity, which is another serious issue of warm wine regions. The alternative involves the combined use of Lachancea thermotolerans to lower the pH of musts that have a deficiency of acidity, Lactiplantibacillus plantarum to attain malic acid stability during the initial stages of alcoholic fermentation, and Saccharomyces bayanus to finish the alcoholic fermentation in challenging wines of high potential alcohol degree of over 15% (v/v). The new biotechnology suggested produced wines with higher final levels in lactic acid, glycerol, color intensity, ethyl lactate and 2-phenyl ethyl acetate than the traditional methodology where Saccharomyces genus performs alcoholic fermentation and then Oenococus oeniperforms malolactic fermentation. Moreover, the new alternative produced wines with lower levels in ethanol, pH, acetic acid, ethyl acetate, diacetyl and 1-propanol than the classic method.

References:

1)  Urbina A. et al. (2020) The Combined Use of Lachancea thermotolerans and Lactiplantibacillus plantarum (former Lactobacillus plantarum) in Wine Technology. Foods., 10(6): 1356-1365, DOI 10.3390/foods10061356
2)  Vicente J. et al. (2022) Biological management of acidity in wine industry: A review. Int. J. Food. Microbiol., 375: 109726, DOI 10.1016/j.ijfoodmicro.2022.109726

DOI:

Publication date: October 3, 2023

Issue: ICGWS 2023

Type: Article

Authors

Santiago Benito1*, Javier Vicente2, Wendu Tesfaye1, Eva Navascués1,3, Fernando Calderón1, Antonio Santos2, Domingo Marquina2       

1 Department of Chemistry and Food Technology, Polytechnic University of Madrid, 28040 Madrid, Spain
2 Department of Genetics, Physiology and Microbiology, Unit of Microbiology, Complutense University of Madrid, 28040 Madrid, Spain
3 Pago de Carraovejas, S.L.U., 47300 Penafiel, Valladolid, Spain

Contact the author*

Keywords

Lachancea thermotolerans, Lactiplantibacillus plantarum, Saccharomyces, Oenococus oeni, malic acid, lactic acid

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Model-assisted analysis of the root traits underlying RSA genotypic diversity in Vitis: a promising approach for rootstock selection?

By dissecting the root system architecture (RSA) into its underpinning components (e.g. root emission, axial growth, radial growth, branching, root direction or tropism) and identifying the relationships between them, functional-structural 3D root models are promising tools for analyzing the diversity and complexity of root system phenotypes with Genotype × Environment interactions. The model parameters are assumed to be synthetic traits, less influenced by the environment, and consequently with less polygenic architectures than the integrative RSA traits they drive. Root models can serve as a basis for in silico development of root system ideotypes by highlighting the developmental processes and parameters that most likely influence RSA fitness.

How are canned wine drinkers perceived? An investigation involving Swiss nationals and different scenarios of outdoor leisure activities

This study examines how people who consume wine in cans are perceived in terms of their basic personality characteristics, helps understand the role of cultural background on people’s perception, and verify the role played by the consumption context on the perception. Our hypothesis is that prejudice and negative attitudes towards wine in cans might exert a negative effect on the evaluation of people who consume canned wine. To evaluate this hypothesis, the consumption of wine in cans was evoked in four different contexts of use during outdoor leisure activity (beach resort, ski resort, desert safari, and party). In order to examine the effect of culture on subject’s response we use participants from Switzerland, a country where three different cultures, associated with three different languages, cohabit.

Impact of temperature and solar radiation on grape composition variability in the Saint-Emilion winegrowing area 

Grape composition is strongly influenced by climate conditions. Their expected modifications in near future, notably because of increased temperatures, could significantly modify the biochemical composition of berries at harvest, and thus wine typicity and quality. Elevated temperatures favor sugar accumulation in grapes, enhance malic acid degradation and modify the amino acid content. They also reduce significantly anthocyanin accumulation in Merlot, leading to the imbalance between anthocyanins and sugars, while no significant effects on final anthocyanin levels were reported in Tempranillo[1] and finally affect aromas or aroma precursors.

Time vs drought: leaf age rather than drought drives osmotic adjustment in V. vinifera cv. Pinot Noir

Global warming and increased frequency and/or severity of drought events are among the most threatening consequences of climate change for agricultural crops. In response to drought, grapevine (as many other plants) exhibits osmotic adjustment through active accumulation of osmolytes which in turn shift the leaf turgor loss point (TLP) to more negative values, allowing to maintain stomata opened at lower water potentials1. We investigated the capacity of Pinot noir leaves to modulate their osmotic potential as a function of: (i) time (seasonal osmoregulation), (ii) growing temperatures, and (iii) drought events, to enhance comprehension of the resilience of grapevines in drought conditions. We performed trails under semi-controlled field conditions, and in two different greenhouse chambers (20/15 °C vs 25/20 °C day/night). For two consecutive vegetative seasons, grafted potted grapevines (Pinot noir/SO4) were subjected to two different water regimes for at least 30 days: well-watered (WW) and water deficit (WD).

The surprising role of VvLYK6 in grapevine immune responses triggered by chitin oligomers

For sustainable viticulture, the substitution of chemical inputs with biocontrol products has become one of the most considered strategies. This strategy is based on elicitor-triggered immunity that requires a deep understanding of the molecular mechanisms involved in plant defense activation. Plant immune responses are triggered through the perception of conserved microbe-associated molecular patterns (MAMPs) which are recognized by pattern recognition receptors (PRRs) at the plasma membrane.