terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 The combined use of Lachancea thermotolerans and lactic bacteria in wine technology

The combined use of Lachancea thermotolerans and lactic bacteria in wine technology

Abstract

The production of most red wines that are sold involves an alcoholic fermentation carried out by yeasts of the Saccharomyces genus, and a subsequent fermentation carried out by lactic bacteria of the Oenococus oeni species after the first one is fully completed. However, the traditional process can face complications, which can be more likely in grape juices with high levels of sugar and pH. Because of climate change, these situations are more frequent in the wine industry. The main hazards in those scenarios are halts or delays in the alcoholic fermentation or the growth of unwanted bacteria while the alcoholic fermentation is not done yet and the wine still has residual sugars. The study suggests a new alternative that provides a solution or lowers the risk of those scenarios while raising acidity, which is another serious issue of warm wine regions. The alternative involves the combined use of Lachancea thermotolerans to lower the pH of musts that have a deficiency of acidity, Lactiplantibacillus plantarum to attain malic acid stability during the initial stages of alcoholic fermentation, and Saccharomyces bayanus to finish the alcoholic fermentation in challenging wines of high potential alcohol degree of over 15% (v/v). The new biotechnology suggested produced wines with higher final levels in lactic acid, glycerol, color intensity, ethyl lactate and 2-phenyl ethyl acetate than the traditional methodology where Saccharomyces genus performs alcoholic fermentation and then Oenococus oeniperforms malolactic fermentation. Moreover, the new alternative produced wines with lower levels in ethanol, pH, acetic acid, ethyl acetate, diacetyl and 1-propanol than the classic method.

References:

1)  Urbina A. et al. (2020) The Combined Use of Lachancea thermotolerans and Lactiplantibacillus plantarum (former Lactobacillus plantarum) in Wine Technology. Foods., 10(6): 1356-1365, DOI 10.3390/foods10061356
2)  Vicente J. et al. (2022) Biological management of acidity in wine industry: A review. Int. J. Food. Microbiol., 375: 109726, DOI 10.1016/j.ijfoodmicro.2022.109726

DOI:

Publication date: October 3, 2023

Issue: ICGWS 2023

Type: Article

Authors

Santiago Benito1*, Javier Vicente2, Wendu Tesfaye1, Eva Navascués1,3, Fernando Calderón1, Antonio Santos2, Domingo Marquina2       

1 Department of Chemistry and Food Technology, Polytechnic University of Madrid, 28040 Madrid, Spain
2 Department of Genetics, Physiology and Microbiology, Unit of Microbiology, Complutense University of Madrid, 28040 Madrid, Spain
3 Pago de Carraovejas, S.L.U., 47300 Penafiel, Valladolid, Spain

Contact the author*

Keywords

Lachancea thermotolerans, Lactiplantibacillus plantarum, Saccharomyces, Oenococus oeni, malic acid, lactic acid

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Can yeast cells sense other yeasts beyond competition interactions?

The utilization of non-Saccharomyces yeasts in the wine industry has increased significantly in recent years. Alternative species need commonly be employed in combination with Saccharomyces cerevisiae to avoid stuck fermentation, or microbial spoilage. The employment of more than one yeast starter can lead to interactions between different species with an impact on the outcome of wine fermentation. Previous studies[1] demonstrated that S. cerevisiae elicits transcriptional responses with both shared and species-specific features in co-culture with other yeast species.

Bioprotection of grape must by Metschnikowia sp.: genericity and mechanism

The market trend heads to food products with less chemical inputs, including in oenology. During the winemaking process, sulfites are commonly use to avoid microbiological contamination and stabilization of the wine thanks to its antimicrobial and antioxidant activities. Nevertheless, this use is not without consequences on human health and environment, leading for example to allergic reaction and pollution. A biological alternative to these sulfites has emerges: the bioprotection.

Exploring relationships among grapevine chemical and physiological parameters and mycobiome composition under drought stress

Improving our knowledge on biotic and abiotic factors that influence the composition of the grapevine mycobiome is of great agricultural significance, due to potential effects on plant health, productivity, and wine characteristics. Among the various environmental factors affecting the morphological, physiological, biochemical and molecular attributes of grapevine, drought stress is one of the most severe, becoming increasingly an issue worldwide.

Effect of foliar application of urea and nano-urea on the cell wall of Monastrell grape skins

The foliar application of urea has been shown to be able to satisfy the specific nutritional needs of the vine as well as to increase the nitrogen composition of the must. On the other hand, the use of nanotechnology could be of great interest in viticulture as it would help to slow down the release of urea and protect it against possible degradation. Several studies indicate that cell wall synthesis and remodeling are affected by nitrogen availability.

First results on the chemical composition of red wines from the pressing of marc

In the Bordeaux vineyards, press wine represents approximately 15% of the total volume of wine produced[1]. Valuing this large volume of wine is necessary from an economic point of view, but also because of their organoleptic contribution to the blend, and their contribution to the construction of wines for laying down. Therefore, this study was developed considering the lack of recent scientific knowledge on the composition of red press wines. The aim of this study is to establish an initial assessment of their chemical composition including aromatic compounds and a phenolic part.