terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 The combined use of Lachancea thermotolerans and lactic bacteria in wine technology

The combined use of Lachancea thermotolerans and lactic bacteria in wine technology

Abstract

The production of most red wines that are sold involves an alcoholic fermentation carried out by yeasts of the Saccharomyces genus, and a subsequent fermentation carried out by lactic bacteria of the Oenococus oeni species after the first one is fully completed. However, the traditional process can face complications, which can be more likely in grape juices with high levels of sugar and pH. Because of climate change, these situations are more frequent in the wine industry. The main hazards in those scenarios are halts or delays in the alcoholic fermentation or the growth of unwanted bacteria while the alcoholic fermentation is not done yet and the wine still has residual sugars. The study suggests a new alternative that provides a solution or lowers the risk of those scenarios while raising acidity, which is another serious issue of warm wine regions. The alternative involves the combined use of Lachancea thermotolerans to lower the pH of musts that have a deficiency of acidity, Lactiplantibacillus plantarum to attain malic acid stability during the initial stages of alcoholic fermentation, and Saccharomyces bayanus to finish the alcoholic fermentation in challenging wines of high potential alcohol degree of over 15% (v/v). The new biotechnology suggested produced wines with higher final levels in lactic acid, glycerol, color intensity, ethyl lactate and 2-phenyl ethyl acetate than the traditional methodology where Saccharomyces genus performs alcoholic fermentation and then Oenococus oeniperforms malolactic fermentation. Moreover, the new alternative produced wines with lower levels in ethanol, pH, acetic acid, ethyl acetate, diacetyl and 1-propanol than the classic method.

References:

1)  Urbina A. et al. (2020) The Combined Use of Lachancea thermotolerans and Lactiplantibacillus plantarum (former Lactobacillus plantarum) in Wine Technology. Foods., 10(6): 1356-1365, DOI 10.3390/foods10061356
2)  Vicente J. et al. (2022) Biological management of acidity in wine industry: A review. Int. J. Food. Microbiol., 375: 109726, DOI 10.1016/j.ijfoodmicro.2022.109726

DOI:

Publication date: October 3, 2023

Issue: ICGWS 2023

Type: Article

Authors

Santiago Benito1*, Javier Vicente2, Wendu Tesfaye1, Eva Navascués1,3, Fernando Calderón1, Antonio Santos2, Domingo Marquina2       

1 Department of Chemistry and Food Technology, Polytechnic University of Madrid, 28040 Madrid, Spain
2 Department of Genetics, Physiology and Microbiology, Unit of Microbiology, Complutense University of Madrid, 28040 Madrid, Spain
3 Pago de Carraovejas, S.L.U., 47300 Penafiel, Valladolid, Spain

Contact the author*

Keywords

Lachancea thermotolerans, Lactiplantibacillus plantarum, Saccharomyces, Oenococus oeni, malic acid, lactic acid

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

The use of plasma activated water in barrel disinfection: impact on oak wood composition

The use of barrels is a practice that improves the quality of wines. The porous structure of wood favors the accumulation of microorganisms that can deteriorate the quality of wines so that barrel cleaning and sanitizing treatments are essential. The burning of sulphur discs has been the most common practice in winemaking because ots biocide effect. Nevertheless, its effectiveness is still insufficient and it is harmful for human health.

Genetic variation among wild grapes native to Japan

Domesticated grapes are assumed to have originated in the Middle East. However, a considerable number of species are native in East Asian countries such as China, Korea and Japan as well. Evidence suggests that a total of seven species and eight varieties have been found to be native to Japan. A wide level variation in morphology, genetic and fruit composition exist in wild grape native to Japan.

Survey of pesticide residues in vineyard soils from the Denomination of Origin Ribeiro

Vineyards from mild temperature, high humidity locations receive often treatments with fungicides to prevent damages produced by fungi responsible for mildium, oidium and botrytis infections. In addition, insecticides are also applied to vineyards to fight again pests, which affect directly, or indirectly (as vectors of different diseases), their productivity. A fraction of the above compounds reaches the soil of vineyards, either during application, or when released from the canopy of vines due to rain-wash-off. Thereafter, depending on soil conditions (pH, organic matter) and environmental variables (regimen of rain, slope of vineyards), they might persist in this compartment, be degraded and/or transferred to water masses, modifying the biodiversity of soils and/or affecting the quality of water reservoirs.

Assessment of plant water consumption rates under climate change conditions through an automated modular platform

The impact of climate change is noticeable in the present weather, making water scarcity the most immediate mediator reducing the performance and viability of crops, including grapevine (Vitis vinifera L.). The present study developed a system (hardware, firmware, and software) for the determination of plant water use through changes in weight through a period. The aim is to measure the differences in grapevine water consumption in response to climate change (+4oC and 700 ppm) under controlled conditions. The results reveal a correlation between daily plant consumption rates and reference evapotranspiration (ETo).

A novel approach for the identification of new biomarkers of wine consumption in human urine using untargeted metabolomics

Wine is one of the most representative components of Mediterranean diet. Moderate wine intake together with food, has been positively correlated with reduced risk of many chronic diseases. This beneficial effect seems to be ascribed to elevated polyphenolic content of wine [1]. Traditional approaches for the identification of wine biomarkers consumption include targeted metabolomics that focuses on the quantification of well-defined metabolites, losing a valuable information about a massive number of compounds. On the other hand, untargeted metabolomics can disclose a large quantity of signals corresponding to potential biomarkers in a single analysis with high sensitivity and resolution.