OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analysis and composition of grapes, wines, wine spirits 9 Key odorants responsible for the sensory spaces defining the different aroma potentials of Grenache and Tempranillo grapes

Key odorants responsible for the sensory spaces defining the different aroma potentials of Grenache and Tempranillo grapes

Abstract

There are yet many gaps in our knowledge about the aroma potential of winemaking grapes and its measurement. Trying to bring some light into this question, a new general strategy based on the accelerated hydrolysis of reconstituted phenolic and aromatic fractions (PAFs) extracted from grapes has been developed. In this paper, we present results obtained by applying such PAFs strategy to the study of 33 different lots of grapes from grenache and Tempranillo from different areas of Spain and different qualities.

Grapes were first crushed and macerated in the presence of ethanol to avoid fermentation. The ethanolic must was pressed and filtered, then, an aliquot was centrifuged, dealcoholized and extracted in a C18 cartridge. Phenols and aroma precursors, PAFs, were eluted with ethanol. This ethanolic fraction was then reconstituted with water and tartaric acid to make a reconstituted wine model (r-PAF; 13.3% ethanol, pH 3.5). Aroma was developed by storing the r-PAFs in complete anoxia at 75ºC for 24h. The 33 ar-PAFs were subjected to different sensory analyses. First, a sorting task to define sensory categories and to select the most representative samples, which were characterized by flash profiling and by gas chromatography-olfactometry (GC-O).

Samples developed strong aroma nuances over a background of vegetal and dry fruit odors and were classified into six different sensory categories: 1) citrus & floral; 2) dried fruit & floral; 3) wood, toast & red fruit; 4) red fruit, black fruit & dried fruit; 5) vegetable & dried fruit; and vi) vegetable. Vegetal notes were attributed to aroma compounds derived from lipid oxidation (Z-3-hexenal, Z-2-nonenal, E-2-nonenal and 1-octen- 3-one), while the dry fruit background was attributed to β-damascenone and to massoia lactone. Citrus notes were associated to the surprising presence of 3-mercaptohexanol, whose origin has been exclusively associated to fermentation. Woody and toasty character were attributed to guaiacol and 4-allyl-2-methoxyphenol while furaneol and an unknown ester-like odorant could be linked to red fruit notes. Samples from Grenache were more often classified as floral, citrus and dry fruit, while samples from tempranillo were more often classified as woody, toasty, red fruit and vegetal.

Overall, the procedure provides a new insight into the aroma potential of winemaking grapes, which should be helpful in understanding and managing grape quality.

Acknowledgments

Work funded by the Spanish MCIU AGL2017-87373-C3-1R. Y.A. and LAAE acknowledge the Diputación General de Aragón for a predoctoral fellowship, as well as the European Social Fund.

DOI:

Publication date: June 11, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Yohanna Alegre, SaraFerrero-del-Teso, María-Pilar Sáenz-Navajas, Purificación Fernández-Zurbano, Purificación Hernandez-Orte, Vicente Ferreira

Laboratorio de Análisis del Aroma y Enología (LAAE), Department of Analytical Chemistry, Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2) (UNIZAR-CITA), Associated unit to Instituto de las Ciencias de la Vid y el Vino (ICVV) (UR-CSIC-GR)

Contact the author

Keywords

Phenolic and aromatic fractions (PAFs), accelerated hydrolysis, sensory analysis ,GC-O 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Oenococcus oeni clonal diversity in the carbonic maceration winemaking

This essay was aimed to describe the clonal diversity of Oenococcus oeni in the malolactic fermentation of the carbonic maceration (CM) winemaking. The free and the pressed liquids from CM were sampled and compared to the wine from a standard winemaking with previous destemming and crushing (DC) of grapes [1]. O. oeni strain typification was performed by PFGE as González-Arenzana et al. described (2014) [2]. Results showed that 13 genotypes, referred as to letters, were distinguished from the 49 isolated strains, meaning the genotype “a” the 27%, the “b” the 14%, the “c” the 12%, the “d and e” the 10 % each other, and the remaining ones less than the 8% each one.

Southern Oregon Ava landscape and climate for wine production

The Southern Oregon American Viticultural Area (AVA) consists of the Applegate Valley, Rogue Valley, Umpqua Valley, Elkton Oregon, and Red Hills of Douglas County sub-AVAs (Figure 1) that are some of the many winegrape producing regions found within the intermountain valleys along the west coast of the United States.

Intra-vineyard spatial variability explored over multiple seasons by sensor-based techniques in the Valpolicella area

The identification and management of intra-vineyard variability are key to precision viticulture, and sensors have been proven to be highly efficient tools for detecting these variations.

Use of mathematical modelling and multivariate statistical process control during alcoholic fermentation of red wine

Cyberphysical systems can be seen in the wine industry in the form of precision oenology. Currently, limitations exist with established infrared chemometric models and first principle mathematical models in that they require a high degree of sample preparation, making it inappropriate for use in-line,

Impact of yeast strain and aging time on the secondary metabolites, macromolecule composition, and sensory attributes of sparkling wines elaborated by the traditional method

The occurrence of aroma and macromolecule constituents in sparkling wines, directly influencing their organoleptic characteristics, is affected by several factors, including the grape cultivar, base-wine particularities, inoculated yeasts, the aging time, and winemaking practices [1].