OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analysis and composition of grapes, wines, wine spirits 9 Key odorants responsible for the sensory spaces defining the different aroma potentials of Grenache and Tempranillo grapes

Key odorants responsible for the sensory spaces defining the different aroma potentials of Grenache and Tempranillo grapes

Abstract

There are yet many gaps in our knowledge about the aroma potential of winemaking grapes and its measurement. Trying to bring some light into this question, a new general strategy based on the accelerated hydrolysis of reconstituted phenolic and aromatic fractions (PAFs) extracted from grapes has been developed. In this paper, we present results obtained by applying such PAFs strategy to the study of 33 different lots of grapes from grenache and Tempranillo from different areas of Spain and different qualities.

Grapes were first crushed and macerated in the presence of ethanol to avoid fermentation. The ethanolic must was pressed and filtered, then, an aliquot was centrifuged, dealcoholized and extracted in a C18 cartridge. Phenols and aroma precursors, PAFs, were eluted with ethanol. This ethanolic fraction was then reconstituted with water and tartaric acid to make a reconstituted wine model (r-PAF; 13.3% ethanol, pH 3.5). Aroma was developed by storing the r-PAFs in complete anoxia at 75ºC for 24h. The 33 ar-PAFs were subjected to different sensory analyses. First, a sorting task to define sensory categories and to select the most representative samples, which were characterized by flash profiling and by gas chromatography-olfactometry (GC-O).

Samples developed strong aroma nuances over a background of vegetal and dry fruit odors and were classified into six different sensory categories: 1) citrus & floral; 2) dried fruit & floral; 3) wood, toast & red fruit; 4) red fruit, black fruit & dried fruit; 5) vegetable & dried fruit; and vi) vegetable. Vegetal notes were attributed to aroma compounds derived from lipid oxidation (Z-3-hexenal, Z-2-nonenal, E-2-nonenal and 1-octen- 3-one), while the dry fruit background was attributed to β-damascenone and to massoia lactone. Citrus notes were associated to the surprising presence of 3-mercaptohexanol, whose origin has been exclusively associated to fermentation. Woody and toasty character were attributed to guaiacol and 4-allyl-2-methoxyphenol while furaneol and an unknown ester-like odorant could be linked to red fruit notes. Samples from Grenache were more often classified as floral, citrus and dry fruit, while samples from tempranillo were more often classified as woody, toasty, red fruit and vegetal.

Overall, the procedure provides a new insight into the aroma potential of winemaking grapes, which should be helpful in understanding and managing grape quality.

Acknowledgments

Work funded by the Spanish MCIU AGL2017-87373-C3-1R. Y.A. and LAAE acknowledge the Diputación General de Aragón for a predoctoral fellowship, as well as the European Social Fund.

DOI:

Publication date: June 11, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Yohanna Alegre, SaraFerrero-del-Teso, María-Pilar Sáenz-Navajas, Purificación Fernández-Zurbano, Purificación Hernandez-Orte, Vicente Ferreira

Laboratorio de Análisis del Aroma y Enología (LAAE), Department of Analytical Chemistry, Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2) (UNIZAR-CITA), Associated unit to Instituto de las Ciencias de la Vid y el Vino (ICVV) (UR-CSIC-GR)

Contact the author

Keywords

Phenolic and aromatic fractions (PAFs), accelerated hydrolysis, sensory analysis ,GC-O 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Prise en compte et mutations de l’acidité volatile au XXe siècle : les évolutions règlementaires, scientifiques et qualitatives d’un composé du vin au regard de l’histoire

Les composés actifs du vin ont, jusqu’ici, peu fait l’objet d’études sur le temps long. Le développement de l’œnologie, de l’analyse des vins et, de manière concomitante, l’essor des règlementations vinicoles au XXe siècle révèlent pourtant au grand jour le poids de ces composés et leurs évolutions. Dans cette communication, nous souhaitons montrer comment l’acidité volatile des vins,

Evolution of the appellation of origin concept in the vineyards of Australia

Australia is the seventh largest producer of wine and crushed 1.42 million tonnes of wine grapes in the 2001 vintage.

Shading nets for the adaptation to climate change: effect on vine physiology and grape quality 

Viticulture is threatened by the environmental modification caused by climate change. Higher temperatures determine an acceleration of the ripening process, which can be detrimental to wine quality. In the mediterranean area, heat waves are also increasingly frequent, with consequent blocking of the vegetative activity of the vines and increased susceptibility to sunburn damage. thus, adaptation strategies are necessary to reduce stress and improve the quality of grape production. Amongst the various techniques available, shading nets represent an interesting alternative for their effects on canopy microclimate (i.e., reduction of photosynthetic activity, improvement of water use efficiency, and slowing down in the ripening process).

Towards multi-purpose valorisation of polyphenols from grape pomace: Pressurized liquid extraction coupled to purification by membrane processes

Grape by-products (including skins, seeds, stems and vine shoots) are rich in health promoting polyphenols. Their extraction from winery waste and their following purification are of special interest to produce extracts with high added value compounds. Meanwhile, the growing concern over environmental problems associated with economic constraints, require the development of environmentally sustainable extraction technologies. The extraction using semi-continuous subcritical water, as a natural solvent at high temperature and high pressure a technology is promising “green” technology that is environmentally friendly, energy efficient and improve the extraction process in plant tissues.

A methyl salicylate glycoside mapping of monovarietal Italian white wines.

Among the main plant secondary metabolites, glycosides have a key-role in wine chemistry. Glycosides are non-volatile complex composed of a non-sugar component (aglycone) bound to one or more carbohydrates.