OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analysis and composition of grapes, wines, wine spirits 9 Key odorants responsible for the sensory spaces defining the different aroma potentials of Grenache and Tempranillo grapes

Key odorants responsible for the sensory spaces defining the different aroma potentials of Grenache and Tempranillo grapes

Abstract

There are yet many gaps in our knowledge about the aroma potential of winemaking grapes and its measurement. Trying to bring some light into this question, a new general strategy based on the accelerated hydrolysis of reconstituted phenolic and aromatic fractions (PAFs) extracted from grapes has been developed. In this paper, we present results obtained by applying such PAFs strategy to the study of 33 different lots of grapes from grenache and Tempranillo from different areas of Spain and different qualities.

Grapes were first crushed and macerated in the presence of ethanol to avoid fermentation. The ethanolic must was pressed and filtered, then, an aliquot was centrifuged, dealcoholized and extracted in a C18 cartridge. Phenols and aroma precursors, PAFs, were eluted with ethanol. This ethanolic fraction was then reconstituted with water and tartaric acid to make a reconstituted wine model (r-PAF; 13.3% ethanol, pH 3.5). Aroma was developed by storing the r-PAFs in complete anoxia at 75ºC for 24h. The 33 ar-PAFs were subjected to different sensory analyses. First, a sorting task to define sensory categories and to select the most representative samples, which were characterized by flash profiling and by gas chromatography-olfactometry (GC-O).

Samples developed strong aroma nuances over a background of vegetal and dry fruit odors and were classified into six different sensory categories: 1) citrus & floral; 2) dried fruit & floral; 3) wood, toast & red fruit; 4) red fruit, black fruit & dried fruit; 5) vegetable & dried fruit; and vi) vegetable. Vegetal notes were attributed to aroma compounds derived from lipid oxidation (Z-3-hexenal, Z-2-nonenal, E-2-nonenal and 1-octen- 3-one), while the dry fruit background was attributed to β-damascenone and to massoia lactone. Citrus notes were associated to the surprising presence of 3-mercaptohexanol, whose origin has been exclusively associated to fermentation. Woody and toasty character were attributed to guaiacol and 4-allyl-2-methoxyphenol while furaneol and an unknown ester-like odorant could be linked to red fruit notes. Samples from Grenache were more often classified as floral, citrus and dry fruit, while samples from tempranillo were more often classified as woody, toasty, red fruit and vegetal.

Overall, the procedure provides a new insight into the aroma potential of winemaking grapes, which should be helpful in understanding and managing grape quality.

Acknowledgments

Work funded by the Spanish MCIU AGL2017-87373-C3-1R. Y.A. and LAAE acknowledge the Diputación General de Aragón for a predoctoral fellowship, as well as the European Social Fund.

DOI:

Publication date: June 11, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Yohanna Alegre, SaraFerrero-del-Teso, María-Pilar Sáenz-Navajas, Purificación Fernández-Zurbano, Purificación Hernandez-Orte, Vicente Ferreira

Laboratorio de Análisis del Aroma y Enología (LAAE), Department of Analytical Chemistry, Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2) (UNIZAR-CITA), Associated unit to Instituto de las Ciencias de la Vid y el Vino (ICVV) (UR-CSIC-GR)

Contact the author

Keywords

Phenolic and aromatic fractions (PAFs), accelerated hydrolysis, sensory analysis ,GC-O 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Sorption of aroma compounds by commercial specific yeast derivatives and the influence of polyphenols

Specific inactivated yeast derivatives (SYDs) from S. cerevisiae are obtained through thermal, mechanical, and enzymatic processes and are used to enhance wine quality.

Genetic traceability of ‘Nebbiolo’ musts and wines by single nucleotide polymorphism (SNP) genotyping assays

AIM: ‘Nebbiolo’ (Vitis vinifera L.) is one of the most ancient and prestigious Italian grape cultivars. It is renowned for its use in producing monovarietal high-quality red wines, such Barolo and Barbaresco. Wine quality and value can be heavily modified if cultivars other than those allowed are employed.

Microbial ecosystems in wineries – molecular interactions between species and modelling of population dynamics

Microbial ecosystems are primary drivers of viticultural, oenological and other cellar-related processes
such as wastewater treatment. Metagenomic datasets have broadly mapped the vast microbial species
diversity of many of the relevant ecological niches within the broader wine environment, from vineyard
soils to plants and grapes to fermentation. The data highlight that species identities and diversity
significantly impact agronomic performance of vineyards as well as wine quality, but the complexity
of these systems and of microbial growth dynamics has defeated attempts to offer actionable
tools to guide or predict specific outcomes of ecosystem-based interventions.

The performance of grapevines on identified terroirs in Stellenbosch, South Africa

A terroir can be defined as a natural unit that is characterised by a specific agricultural potential, which is imparted by natural environmental features, and is reflected in the characteristics of the final product.

Differential responses of red and white grape cultivars trained to a single trellis system – the VSP

Commercial grape production relies on training grapevine cultivars onto a variety of trellis systems. Training allows for well-lit leaves and clusters, maximizing fruit quality in addition to facilitating cultivation, harvesting, and diseases control. Although grapevines can be trained onto an infinite variety of trellis systems, most red and white cultivars are trained to the standard VSP (Vertical Shoot Positioning) system. However, red and white cultivars respond differently to VSP in fruit composition and growth characteristics, which are yet to be fully understood. Therefore, the objective of this study was to examine the influence of the VSP trellis system on fruit composition of three red, Cabernet Sauvignon, Merlot and Syrah, and three white, Chardonnay, Riesling, and Gewurztraminer cultivars grown under uniform growing conditions in the same vineyard. All cultivars were monitored for maturity and harvested at their physiologically maximum possible sugar concentration to compare various fruit quality attributes such as Brix, pH, TA, malic and tartaric acids, glucose and fructose, potassium, YAN, and phenolic compounds including total anthocyanins, anthocyanin profile, and tannins. A distinct pattern in fruit composition was observed in each cultivar. In regards to growth characteristics, Syrah grew vigorously with the highest cluster weight. Although all cultivars developed pyriform seeds, the seed size and weight varied among all cultivars. Also varied were mesocarp cell viability, brush morphology, and cane structure. This knowledge of the canopy architectural characteristics assessed by the widely employed fruit compositional attributes and growth characteristics will aid the growers in better management of the vines in varied situations.