OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analysis and composition of grapes, wines, wine spirits 9 Key odorants responsible for the sensory spaces defining the different aroma potentials of Grenache and Tempranillo grapes

Key odorants responsible for the sensory spaces defining the different aroma potentials of Grenache and Tempranillo grapes

Abstract

There are yet many gaps in our knowledge about the aroma potential of winemaking grapes and its measurement. Trying to bring some light into this question, a new general strategy based on the accelerated hydrolysis of reconstituted phenolic and aromatic fractions (PAFs) extracted from grapes has been developed. In this paper, we present results obtained by applying such PAFs strategy to the study of 33 different lots of grapes from grenache and Tempranillo from different areas of Spain and different qualities.

Grapes were first crushed and macerated in the presence of ethanol to avoid fermentation. The ethanolic must was pressed and filtered, then, an aliquot was centrifuged, dealcoholized and extracted in a C18 cartridge. Phenols and aroma precursors, PAFs, were eluted with ethanol. This ethanolic fraction was then reconstituted with water and tartaric acid to make a reconstituted wine model (r-PAF; 13.3% ethanol, pH 3.5). Aroma was developed by storing the r-PAFs in complete anoxia at 75ºC for 24h. The 33 ar-PAFs were subjected to different sensory analyses. First, a sorting task to define sensory categories and to select the most representative samples, which were characterized by flash profiling and by gas chromatography-olfactometry (GC-O).

Samples developed strong aroma nuances over a background of vegetal and dry fruit odors and were classified into six different sensory categories: 1) citrus & floral; 2) dried fruit & floral; 3) wood, toast & red fruit; 4) red fruit, black fruit & dried fruit; 5) vegetable & dried fruit; and vi) vegetable. Vegetal notes were attributed to aroma compounds derived from lipid oxidation (Z-3-hexenal, Z-2-nonenal, E-2-nonenal and 1-octen- 3-one), while the dry fruit background was attributed to β-damascenone and to massoia lactone. Citrus notes were associated to the surprising presence of 3-mercaptohexanol, whose origin has been exclusively associated to fermentation. Woody and toasty character were attributed to guaiacol and 4-allyl-2-methoxyphenol while furaneol and an unknown ester-like odorant could be linked to red fruit notes. Samples from Grenache were more often classified as floral, citrus and dry fruit, while samples from tempranillo were more often classified as woody, toasty, red fruit and vegetal.

Overall, the procedure provides a new insight into the aroma potential of winemaking grapes, which should be helpful in understanding and managing grape quality.

Acknowledgments

Work funded by the Spanish MCIU AGL2017-87373-C3-1R. Y.A. and LAAE acknowledge the Diputación General de Aragón for a predoctoral fellowship, as well as the European Social Fund.

DOI:

Publication date: June 11, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Yohanna Alegre, SaraFerrero-del-Teso, María-Pilar Sáenz-Navajas, Purificación Fernández-Zurbano, Purificación Hernandez-Orte, Vicente Ferreira

Laboratorio de Análisis del Aroma y Enología (LAAE), Department of Analytical Chemistry, Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2) (UNIZAR-CITA), Associated unit to Instituto de las Ciencias de la Vid y el Vino (ICVV) (UR-CSIC-GR)

Contact the author

Keywords

Phenolic and aromatic fractions (PAFs), accelerated hydrolysis, sensory analysis ,GC-O 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

VOLATILE COMPOSITION OF WINES USING A GC/TOFMS: HS-SPME VS MICRO LLE AS SAMPLE PREPARATION METHODOLOGY

Wine aroma analysis can be done by sensorial or instrumental analysis, the latter involving several me-thodologies based on olfactometric detection, electronic noses or gas chromatography. Gas Chromatography has been widely used for the study of the volatile composition of wines and depending on the detection system coupled to the chromatographic system, quantification and identification of individual compounds can be achieved.

Mousy off-flavor detection: a rapid LCMS/MS method

These days, consumers are interested in food products linked to the environment and the concept of naturalness. They prefer “free” products, such as those with no pesticide residues or no added sulfur dioxide (so2) in wines. In fact, so2 is the most widely used preservative in winemaking, as it has multiple properties at low cost: it is antioxidant, antioxidasic and antimicrobial.

Mesoclimate impact on Tannat in the Atlantic terroir of Uruguay

The study of climate is relevant as an element conditioning the typicity of a product, its quality and sustainability over the years. The grapevine development and growth and the final grape and wine composition are closely related to temperature, while climate components vary at mesoscale according to topography and/or proximity to large bodies of water. The objective of this work is to assess the mesoclimate of the Atlantic region of Uruguay and to determine the effect of topography and the ocean on temperature and consequently on Tannat grapevine behavior.

Response of Shiraz/101‐14 mgt to in‐row vine spacing

Knowledge of vine reaction to plant spacing under high potential soil conditions is restricted. This study was done to determine effects of vine spacing

Pharmacological basis of the J-shaped curve in biological effects of wine

The classical pharmacological model assumes that the effect of a drug is proportional to the fraction of receptors occupied by the drug. In the simplest circumstances, the relationship between dose of a drug and response, when plotted on a logarithmic scale for drug concentration, is described by a sigmoidal curve. It presumes the existence of a threshold dose, below which no biological effect appears, and a maximal response in the form of a plateau, when a further increase in the dose of drug has no effect.