terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Biotype diversity within the autochthonous ‘Bobal’ grapevine variety

Biotype diversity within the autochthonous ‘Bobal’ grapevine variety

Abstract

Bobal is the second most widely grown Spanish red grape variety (54,165 has), mainly cultivated in the Valencian Community and especially, in Utiel-Requena region (about 67% of 34,000 has). In this study, agronomic and enological parameters were determined in 98 biotypes selected during 2018 and 2019 in more than 50 vineyards over 50 years-old in the Utiel-Requena region. Moreover, a multi-criteria approach considering temperature and rainfall (Fig. 1A), among other parameters, was made to establish three different zones within the region (Fig. 1B), where in the future the selected biotypes will evaluated. In fact, in 2020, 4 replicates and 12 vines per biotype were planted in an experimental vineyard to preserve this important intra-cultivar diversity. The results from 2021 and 2022 seasons confirmed a wide range of variation among biotypes for important agronomic and oenological parameters. In 2023, a selection of biotypes from the established zones were grafted in different rootstocks (Fig 1B) and a first genetic and physiological characterization of the most interesting biotypes is being performed.

Acknowledgements: The authors would like to acknowledge D.O Utiel-Requena (Valencia, Spain) and AEI-FEDER PID2021-123305OB-C31 for their financial and technical support.

DOI:

Publication date: October 4, 2023

Issue: ICGWS 2023

Type: Article

Authors

R. Ferrer-Gallego1*, F. Sanz1, A. Yeves1, D. Guerra1, I. Buesa2, J.G. Pérez-Pérez3 and D.S. Intrigliolo1

1Department of Ecology, Desertification Research Centre (CIDE-CSIC-UV-GV), Moncada, 46113 Valencia, Spain.
2Universidad de las Islas Baleares (UIB), Departamento de Biología, Ctra. Valldemossa km 7.5, Balearic Islands, Palma, 07122, Spain.
3Centro para el Desarrollo de la Agricultura Sostenible, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113 Moncada, Valencia, Spain.

Contact the author*

Keywords

bobal, clonal selection, biodiversity, experimental vineyards, phenotyping

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Model-assisted analysis of the root traits underlying RSA genotypic diversity in Vitis: a promising approach for rootstock selection?

By dissecting the root system architecture (RSA) into its underpinning components (e.g. root emission, axial growth, radial growth, branching, root direction or tropism) and identifying the relationships between them, functional-structural 3D root models are promising tools for analyzing the diversity and complexity of root system phenotypes with Genotype × Environment interactions. The model parameters are assumed to be synthetic traits, less influenced by the environment, and consequently with less polygenic architectures than the integrative RSA traits they drive. Root models can serve as a basis for in silico development of root system ideotypes by highlighting the developmental processes and parameters that most likely influence RSA fitness.

The characterization of Vitis vinifera L cv. Cabernet sauvignon: the contribution of Ecklonia maxima seaweed extract

Biostimulants and biofertilizers are considered environmentally friendly and cost-effective alternatives to synthetic fertilizers, plant growth regulators and crop improvement products. Broadly, plant biostimulants are expected to improve nutrient use efficiency, tolerance to abiotic stress, quality traits and availability of nutrients in the soil or rhizosphere. Currently, seaweed extracts account for more than 33% of the total plant biostimulant market. Within this category, Ascophyllum nodosum (AN), is the most widely studied and applied in biostimulant formulations.

Metabolomic insights into wine’s sensory identity: unveiling climate-driven changes in aroma composition

Wine, a sensitive and intricate agricultural product, is being affected by climate change, which accelerates grapevine phenological stages and alters grape composition and ripening. This influences the synthesis of key aroma compounds, shaping wine’s sensory attributes [1]. The complex aroma profile, resulting from compound interactions, presents a metabolomics challenge to identify these indicators and their environmental change responses, which is being addressed using diverse analytical techniques.

Optimization of the ripening time of new varieties descendants of Monastrell

Given the impact of climate change on viticulture in the Region of Murcia, this paper attempts to expose the possibility of using genetic improvement as a dilemma that allows access to new descendant varieties of the autochthonous variety Monastrell crossed with varieties such as Syrah and Cabernet. Sauvignon, thus obtaining hybrids (Gebas and Myrtia). In it, the chromatic parameters and the phenolic profile of the new varieties will be compared with those obtained by the Monastrell variety at two moments during maturation (12 and 14 º Baumé), to check if the results would allow earlier harvests in these new varieties thus avoiding the decoupling between phenolic and technological maturity, while improving the quality of grapes and wines.

Predicting provenance and grapevine cultivar implementing machine learning on vineyard soil microbiome data: implications in grapevine breeding

The plant rhizosphere microbial communities are an essential component of plant microbiota, which is crucial for sustaining the production of healthy crops. The main drivers of the composition of such communities are the growing environment and the planted genotype. Recent viticulture studies focus on understanding the effects of these factors on soil microbial composition since microbial biodiversity is an important determinant of plant phenotype, and of wine’s organoleptic properties. Microbial biodiversity of different wine regions, for instance, is an important determinant of wine terroir.