terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Aromatic characterization of Moscato Giallo by GC-MS/MS and stable isotopic ratio analysis of the major volatile compounds

Aromatic characterization of Moscato Giallo by GC-MS/MS and stable isotopic ratio analysis of the major volatile compounds

Abstract

Among the Moscato grapes, Moscato Giallo is a winegrape variety characterized by a high content of free and glycosylated monoterpenoids, which gives very aromatic wines. The aromatic bouquet of Moscato Giallo is strongly influenced by the high concentration of linalool, geraniol, linalool oxides, limonene, α-terpineol, citronellol, HO-trienol, HO-diols, 8-Hydroxylinalool, geranic acid and β-myrcene, that give citrus, rose, and peach notes.

Except the quali-quantitative analysis, no investigations regarding the isotopic values of the target volatile compounds are documented in literature. Stable isotope ratio analysis represents a modern and powerful tool used by the laboratories responsible for official consumer protection, for the food quality and genuineness assessment.

In this study, samples of Moscato Giallo were collected during the harvest season in 2019 from two Italian regions:Trentino – Alto Adige and Veneto, known lands for the cultivation of this aromatic variety. 

The flavor compounds were extracted from grapes and wines, after alcoholic fermentation of grape juice, and analysed by GC-MS/MS. The results confirmed the presence of typical terpenoids both in free and glycosylated form, responsible for the characteristic aroma of Moscato Giallo variety.

The aromatic compounds were also analysed by GC-C\Py-IRMS for a preliminary investigation. The compound-specific isotope ratio analysis allowed to determine the carbon (δ13C) and hydrogen (δ2H) isotopic signatures of the major volatile compounds for the first time.

DOI:

Publication date: October 4, 2023

Issue: ICGWS 2023

Type: Article

Authors

Mauro Paolini1*, Lorenzo Cucinotta1,2, Alberto Roncone1, Luana Bontempo1, Danilo Sciarrone2, Federica Camin3, Sergio Moser1, Roberto Larcher1

1Fondazione Edmund Mach, via Mach 1, 38098 San Michele all’Adige (TN)
2Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università degli Studi di Messina, Viale Palatucci, snc – 98168 Messina
3Center Agriculture Food Environment (C3A), University of Trento, Via Mach 1, 38010 San Michele all’Adige, (TN), 12 Italy

Contact the author*

Keywords

Moscato Giallo, volatile compounds, GC-MS/MS, GC-C\Py-IRMS

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Understanding the impact of rising temperatures due to climate change on aromatic compositions in Malbec wines from Mendoza, Argentina

Mendoza is one of Argentina’s most important and outstanding wine regions producing the renowned Malbec wines due to its optimal soil and weather conditions. However, the effects of 21st-century climate change would negatively impact Malbec wines quality. This study investigated the effect of temperature increase and the impact of plant hormone abscisic acid (ABA) used to mitigate the negative effect of temperature increase on Malbec wines aromatic composition through GC-MS. Four treatments were applied on vines at field condition: Control, Control + 3 ºC, ABA and ABA + 3 ºC.

Aroma characterization of mold resistant base wines for sparkling wine produced in a warm-temperate area at two different altitudes

In a recent context where consumers pay an increasing attention to sustainability and eco-friendly aspects in the decision-making process, the use of the resistant varieties in the wine sector have returned to the attention. In this context, the use of mould-resistant grape varieties would be an opportunity for sparkling wine producers as it can reduced the pesticide utilization in grape management and hence production costs.
However, the use of the resistant varieties to produce the base wine may be strongly influenced due to its requirements for a particular balance between sugars and acidity to ensure the quality of the final product. In addition, the aromatic profile of base wine plays a crucial role in the perception of the quality of the sparkling wine.

Application of antagonistic Metschnikowia strains against Botrytis cinerea in vineyards 

Less and less chemical plant protection products are approved by the E U. Plant pathogenic fungi become increasingly resistant to the active ingredients that have been around for a long time. Besides, there is a valid demand for effective products that can be applied in organic cultivation.
We examined Metschnikowia strains under laboratory conditions in order to find effective strains against B. cinerea. The antimicrobial mechanism of these yeasts is based on the competition for the ferric ions from the environment. Metschnikowia cells release the pulcherriminic acid which chelates with Fe3+, forming the pigment pulcherrimin.

Atypical aging and hydric stress: insights on an exceptionally dry year

Atypical aging (ATA) is a white wine fault characterized by the appearance of notes of wet rag, acacia blossoms and naphthalene, along with the vanishing of varietal aromas. 2-aminoacetophenone (AAP) – a degradation compound of indole-3-acetic acid (IAA) – is regarded as the main sensorial and chemical marker responsible for this defect. About the origin of ATA, a stress reaction occurring in the vineyard has been looked as the leading cause of this defect. Agronomic, climatic and pedological factors are the main triggers and among them, drought stress seems to play a crucial role.[1]

Drought tolerance assessment and differentiation of grapevine cultivars using physiological metrics: insights from field studies

This study aimed to validate a protocol and compare metrics for evaluating drought tolerance in two Vitis vinifera grapevine cultivars under field conditions. Various metrics were calculated to represent the physiological responses of plants to progressive water deficit. Data were collected from Sauvignon Blanc and Chardonnay plants subjected to three irrigation levels during the 2022-2023 season, along with data from three previous seasons. Hydro-escape areas were used to assess the plant’s ability to reduce water potential with decreasing soil water availability.