terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Rootstock effect on Cabernet Sauvignon aromatic and chemical composition

Rootstock effect on Cabernet Sauvignon aromatic and chemical composition

Abstract

Grape quality potential for wine production is strongly influenced by environmental parameters and agronomic factors. Several studies underline the rootstock effect on scions vegetative growth and berry composition [1] with an impact on wine quality. Rootstocks are promising agronomic tools for climate change adaptation and in most grape-growing regions the potential diversity of rootstocks is not fully used and only a few genotypes are planted. Moreover, little is known about the effect of rootstock genetic variability on the aromatic composition in wines.

The purpose of this communication is to highlight how rootstocks influence Cabernet-Sauvignon red wine aromatic and chemical composition.

This study was conducted in GreffAdapt plot (55 rootstocks × 5 scions × 3 blocks) on a selection of rootstocks focusing on Vitis vinifera cv. Cabernet Sauvignon [1]. Grape samples were collected and fermented in triplicate at laboratory scale under standardized conditions; wines were stabilized and stored at the end of alcoholic fermentation [2].

Esters, higher alcohols, terpenes, C13-Norisoprenoid and methoxypyrazines were performed to evaluate rootstock impact on chemical composition. sensory profile preceded by a panel training as well as Napping were carried out to evaluate samples aromatic expression.

1) Marguerit E. et al. (2019) A relevant experimental vineyard to speed up the selection of grapevine rootstocks. In Proceedings of the 21th International Giesco meeting, Tessaloniki, Greece, 24–28 June 2019; Koundouras, S., Ed.; pp. 204–208
2) Trujillo M. et al. (2022) Impact of Grape Maturity on Ester Composition and Sensory Properties of Merlot and Tempranillo Wines. Journal of Agricultural and Food Chemistry, 70(37), 11520-11530, DOI: 10.1021/acs.jafc.2c00543

DOI:

Publication date: October 4, 2023

Issue: ICGWS 2023

Type: Article

Authors

Laura FARRIS1,2, Justine GARBAY1,2, Marine MOREL3, Edouard PELONNIER-MAGIMEL1,2, Laurent RIQUIER1,2, Georgia LYTRA1,2, Elisa MARGUERIT3, Jean-Christophe BARBE1,2

1Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France
3EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d’Ornon, France

Contact the author*

Keywords

rootstock, Cabernet Sauvignon, sensory analysis, gas chromatography

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Effect of rising atmospheric CO2 levels on grapevine yield and composition by the middle of the 21st century: what can we learn from the VineyardFACE?

Atmospheric CO2 levels have been rising continuously since the industrial revolution, affecting crop physiology, yield and quality of harvest products, and grapevine is no exception [1]. Most of previously reported studies used potted plants in controlled environments, and explored grapevine response to relatively high CO2 levels, 700 ppm or more. The vineyardFACE, established in Geisenheim in 2012, uses a free air carbon dioxide enrichment (FACE) system to simulate a moderate (ambient +20%) increase in atmospheric CO2 in a vineyard planted with cvs. Cabernet-Sauvignon and Riesling grafted on rootstock 161-49 Couderc and SO4, respectively.

Retrospective analysis of our knowledge regarding the genetics of relevant traits for rootstock breeding 

Rootstocks were the first sustainable and environmentally friendly strategy to cope with a major threat for Vitis vinifera cultivation. In addition to providing Phylloxera resistance, they play an important role in protecting against other soil-borne pests, such as nematodes, and in adapting V. vinifera to limiting abiotic conditions. Today viticulture has to adapt to ongoing climate change whilst simultaneously reducing its environmental impact. In this context, rootstocks are a central element in the development of agro-ecological practices that increase adaptive potential with low external inputs. Despite the apparent diversity of the Vitis genus, only few rootstock varieties are used worldwide and most of them have a very narrow genetic background. This means that there is considerable scope to breed new, improved rootstocks to adapt viticulture for the future.

Effect of riboflavin on the longevity of white and rosé wines

Light is a fundamental part at sales points which influences in the conservation of wines, particularly in those that are sold in transparent glass bottles such as rosé wines and increasingly white wines. The photochemical effect known as “light-struck taste” can cause changes in the aromatic characteristics of the wine. This “light-struck taste” is due to reactions triggered by the photochemical sensitivity of riboflavin (RBF).

Extreme vintages affect grape varieties differently: a case study from a cool climate wine region

Eger wine region is located on the northern border of grapevine cultivation zone. In the cool climate, terroir selection is one of the foundations of quality wine making. However, climate change will have a significant impact on these high value-added vineyards. This study presents a case study from 2021 and 2022 with the investigation of three grape varieties (Kadarka, Syrah, Furmint). The experiment was conducted in a steep-sloped vineyard (Nagy-Eged hill) with a southern exposure.

Assessing the Effectiveness of Electrodialysis in Controlling Brettanomyces Growth in Wine

Brettanomyces yeast can negatively impact the quality and stability of wines, posing a significant challenge to winemakers. [1] This study aims to develop novel management practices to limit Brettanomyces impact on wines by evaluating the effectiveness of electrodialysis (ED) technology in removing magnesium (Mg2+) from wine to prevent the development of Brettanomyces yeast. The ED technique utilizes charged membranes to extract ions from the wine, and it is considered an alternative to cold stabilization that requires less energy. [2]