terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Exploring the prevalence of esca-induced leaf symptoms in French vineyards and the role of climate: a national scale analysis

Exploring the prevalence of esca-induced leaf symptoms in French vineyards and the role of climate: a national scale analysis

Abstract

Esca, a severe trunk disease affecting vineyards, is caused by fungal pathogens that induce wood necrosis and decay, leaf symptoms, yield losses, and potentially a rapid death of the vine. The prevalence of this disease varies across years, regions, cultivars, and plot ages. Despite its significance in understanding and predicting dieback risk in different vineyards, the role of climate in trunk diseases remains a relatively unexplored research area. While some studies have demonstrated the impact of certain climatic conditions on the prevalence of the disease, they often focus on a limited number of plots and yield conflicting results.We conducted a statistical analysis, using a Bayesian approach on a national database comprising prevalence data of esca from over 500 different plots in France, spanning the years 2003 to 2022 and encompassing various cultivars. The aim was to identify the climatic risk factors while considering plot-specific factors such as cultivar and age. Climate factors as soil moisture and temperature were assessed with the French climate database SAFRAN.

The results revealed a non-linear relationship between age and esca prevalence, which was dependent on the cultivar. Specifically, we observed that prevalence tends to increase between the ages of 15 and 40 years, varying with the cultivar, and subsequently declined gradually. Furthermore, significant effects were found, particularly indicating an increase in esca prevalence with higher soil moisture levels. Conversely, an increase in average air temperature tends to decrease the prevalence of esca in the field. These results highlighted the importance of climatic factors on esca prevalence.

Acknowledgements: We would thank the Plan National Dépérissement du Vignoble for funding this research. We would thank all the technical partners throughout France who gave us access to their data.

DOI:

Publication date: October 4, 2023

Issue: ICGWS 2023

Type: Article

Authors

Lucas Etienne1*, Lucia Guérin-Dubrana1, Frédéric Fabre1, Elise Frank3, Davide Martinetti2, Lucie Michel3, Valérie Bonnardot4, Chloé Delmas1

1 INRAE, ISVV, Bordeaux Sciences Agro, Santé et Agroécologie du Vignoble, 33140 Villenave d’Ornon, France
2 INRAE, Biostatistiques et Processus Spatiaux, 84000 Avignon, France

3 INRAE, Plateforme ESV, Biostatistiques et Processus Spatiaux, 84914 Avignon, France
4 CNRS, Université Rennes 2, Littoral Environnement Télédétection Géomatique, 35045 Rennes, France

Contact the author*

Keywords

trunk disease, climatic conditions, statistical analysis

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Induction of polyphenols in seedlings of Vitis vinifera cv. Monastrell by the application of elicitors

Contamination problems arising from the use of pesticides in viticulture have raised concerns. One of the alternatives to reduce contamination is the use of elicitors, molecules capable of stimulating the natural defences of plants, promoting the production of phenolic compounds (PC) that offer protection against biotic and abiotic stress. Previous studies on Cabernet-Sauvignon seedlings demonstrated that foliar application of elicitors methyl jasmonate (MeJ) and benzothiadiazole (BTH) increased proteins and PC involved in grapevine defence mechanisms. However, no trials had been conducted on Monastrell seedlings, a major winegrape variety in Spain.

Effect of soil particle size on vine water status, leaf ABA content and berry quality in Nebbiolo grapes

The root and shoot abscisic acid (ABA) accumulation in response to water deficit and its relation with stomatal conductance is longtime known in grapevine. ABA-dependent and ABA-independent signalling response to osmotic stress coexist in sessile plants. In grapevine, the signaling role of ABA in response to water stress conditions and its influence on berry quality is critical to manage grapevine acclimation to climate change.

Wine odors: chemicals, physicochemical and perceptive processes involved in their perception

The odors of wines are diverse, complex and dynamic and much research has been devoted to the understanding of their chemical bases. However, while the “basic” chemical part of the problem, namely the identity of the chemicals responsible for the different odor nuances, was satisfactorily solved years ago, there are some relevant questions precluding a clear understanding. These questions are related to the physicochemical interactions determining the effective volatilities of the odorants and, particularly, to the perceptual interactions between different odor molecules affecting in different ways to the final sensory outputs.

Physicochemical behaviour of wine spirit and wine distillate aged in Sherry Casks® and Brandy casks

Brandy is a spirit drink made from “wine spirit” (<86% Alcohol by Volume – ABV; high levels of congeners and they are mainly less volatile than ethanol), it may be blended with a “wine distillate” (<94.8%ABV; low levels of congeners and these are mainly more volatile than ethanol), as long as that distillate does not exceed a maximum of 50% of the alcoholic content of the finished product[1]. Brandy must be aged for at least 6 months in oak casks with <1000L of capacity. During ageing, changes occur in colour, flavour, and aroma that improve the quality of the original distillate.

Use of UHPH to improve the implantation of non-Saccharomyces yeasts

Ultra High-Pressure Homogenization (UHPH) is a high-pressure pumping at 300 MPa (>200 MPa) with a subsequent depressurization against a highly resistant valve made of tungsten carbide covered by ceramic materials or carbon nanoparticles. The intense impact and shear efforts produce the nano-fragmentation of colloidal biopolymers including the elimination of microorganism (pasteurization or sterilization depending on in-valve temperature) and the inactivation of enzymes.