terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 What to do to solve the riddle of vine rootstock induced drought tolerance

What to do to solve the riddle of vine rootstock induced drought tolerance

Abstract

Climate change will increase the frequency of water deficit situation in some European regions, by the increase of the evapotranspiration and the reduction of rainfalls during the growing cycle. This requires finding ways of adaptation, including the use of plant material which is more tolerant to drought. In addition to the varieties used as scions that result in the typicality of wines, rootstocks constitute a relevant way of adaptation to more stressful environmental conditions.

The rootstock genotype impacts grapevine functioning at three levels: the absorption of water, the water transport and the water consumption. The variability of root anatomy, root depth and water extraction capacity may explain water deficit responses differences observed or measured between rootstocks in pot or in field experiments. Whole root hydraulic conductance differed between sensitive and tolerant rootstocks. Vine water use are related to the leaf area and the vigor conferred, but also to regulatory processes, partially independent during the day and the night. Gas exchanges regulation along the day and night but also with the variation of the water status, i.e. the transpiration plasticity to water status, is in fact partially controlled by rootstocks.

Despite the empirical knowledge and the increasing interest dedicated research on grapevine rootstocks, the mechanisms involved in all these responses to water deficit remain poorly understood. Data from the literature and recorded in Bordeaux will be synthesized. Some challenges have to be met to get further crucial information about the traits conferring a higher adaptation to water deficit in order to speed up the selection of new rootstocks tolerant to drought. These challenges, i.e. the variability of the responses due to water status scenario (the intensity and the occurrence in the cycle of the water deficit), the choice of the traits measured and their plasticity, as well as rootstock scion interactions, will be discussed.

DOI:

Publication date: October 4, 2023

Issue: ICGWS 2023

Type: Article

Authors

Elisa Marguerit1, Louis Blois1, Marine Morel1, Davide Biancchi1, Jean-Pascal Tandonnet1, Marina de Miguel1, Gregory Gambetta1, Nathalie Ollat1

1 EGFV, University of Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV
2 Department of Agricultural and Environmental Sciences, University of Milan, via G. Celoria 2, 20133 Milano, Italy

Contact the author*

Keywords

Vitis, root, δ13C, transpiration, plasticity, genetic architecture

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Energy partitioning and functionality of photosystem II in water-stressed grapevines during heatwaves revealed by continuous measurements of chlorophyll fluorescence

The increased intensity and frequency of heatwaves, coupled with prolonged periods of drought, are a significant threat to viticulture worldwide. During these conditions the more exposed leaves can show visible symptoms of heat damage. We monitored the functionality of photosystem II (PSII) in the field to better understand the impact of heatwaves on canopy performance. A factorial experiment was established in summer 2023 using Shiraz grapevines in the Barossa valley of South Australia, involving water-stressed and well-watered vines.

Organic mulches slightly influence wine phenolic composition and sensorial properties

Grapevines have traditionally been grown in semi-arid areas, but viticulture is now compromised by climate change. Therefore, it is necessary to implement environmentally friendly viticulture practices to adapt grapevines to current climatic conditions. In this context, organic mulches offer many benefits, such as reduced soil erosion and increased organic matter, soil water content and crop productivity. However, these practices must not compromise grape and wine quality. Therefore, the objective of this study was to evaluate the effect on wine physicochemical and phenolic composition and sensorial properties of different soil management practices on the vine row. Over four years, five soil treatments were examined in two different vineyards.

Biotic and abiotic factors affecting physiological aspects underlying vegetative vigour in two commercial grapevine varieties

Grapevine vigour, defined as the propensity to assimilate, store and/or use non-structural sugars for allowing fast growth of shoots and producing large canopies[1], is crucial to optimize vineyard management. Recently, a model has been proposed for predicting the vigor of young grapevines through the measurement of the vegetative growth and physiological parameters, such as water status and gas exchange[2]. Our objectives were (1) to explore the influence of the association of two grapevine varieties (Tempranillo and Cabernet Sauvignon, grafted onto R110 rootstocks) with arbuscular mycorrhizal fungi (AMF) on the vegetative vigour of young plants; and (2) to assess the effect of environmental factors linked to climate change on the vegetative vigour of Cabernet Sauvignon.

Irrigation frequency in four grapevine red varieties in Spain. Effect on must volatile composition

The irrigation water management in the vineyard is a crucial aspect to obtain sustainable quality production over time. Previous studies have set the water requirements to be applied in the vineyard at 30 % of the reference evapotranspiration (ET0), although there are no studies that settle the effects of the frequency of irrigation application on red varieties in Spain. The present study contemplates the application of deficit irrigation (30 % ET0) applying a weekly dose in a single irrigation (T07) or in two irrigation events (T03) per week. The study has been carried out in 2021-2022 with four red varieties in different Spanish wine regions: Garnacha Tinta (Badajoz), Tempranillo (Valladolid), Syrah (Albacete) and Mencía (Lugo). The effects of irrigation frequency on must volatile composition have been evaluated through GC-MS.

New tool to evaluate color modifications during oxygen consumption in white and red wines

Measuring the effect of oxygen consumption on the color of wines as the level of dissolved oxygen decreases over time is very useful to know how much oxygen a wine can consume without significantly altering its color. The changes produced in wine after being exposed to high oxygen concentrations have been studied by different authors, but in all cases the wine has been analyzed once the oxygen consumption process has been completed. This work presents the results obtained with the use of an equipment designed and made to measure simultaneously the level of dissolved oxygen and the spectrum of the wine, during the oxygen consumption process from saturation levels with air to very low levels, which indicate the total consumption of the dosed oxygen[1,2].