terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 What to do to solve the riddle of vine rootstock induced drought tolerance

What to do to solve the riddle of vine rootstock induced drought tolerance

Abstract

Climate change will increase the frequency of water deficit situation in some European regions, by the increase of the evapotranspiration and the reduction of rainfalls during the growing cycle. This requires finding ways of adaptation, including the use of plant material which is more tolerant to drought. In addition to the varieties used as scions that result in the typicality of wines, rootstocks constitute a relevant way of adaptation to more stressful environmental conditions.

The rootstock genotype impacts grapevine functioning at three levels: the absorption of water, the water transport and the water consumption. The variability of root anatomy, root depth and water extraction capacity may explain water deficit responses differences observed or measured between rootstocks in pot or in field experiments. Whole root hydraulic conductance differed between sensitive and tolerant rootstocks. Vine water use are related to the leaf area and the vigor conferred, but also to regulatory processes, partially independent during the day and the night. Gas exchanges regulation along the day and night but also with the variation of the water status, i.e. the transpiration plasticity to water status, is in fact partially controlled by rootstocks.

Despite the empirical knowledge and the increasing interest dedicated research on grapevine rootstocks, the mechanisms involved in all these responses to water deficit remain poorly understood. Data from the literature and recorded in Bordeaux will be synthesized. Some challenges have to be met to get further crucial information about the traits conferring a higher adaptation to water deficit in order to speed up the selection of new rootstocks tolerant to drought. These challenges, i.e. the variability of the responses due to water status scenario (the intensity and the occurrence in the cycle of the water deficit), the choice of the traits measured and their plasticity, as well as rootstock scion interactions, will be discussed.

DOI:

Publication date: October 4, 2023

Issue: ICGWS 2023

Type: Article

Authors

Elisa Marguerit1, Louis Blois1, Marine Morel1, Davide Biancchi1, Jean-Pascal Tandonnet1, Marina de Miguel1, Gregory Gambetta1, Nathalie Ollat1

1 EGFV, University of Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV
2 Department of Agricultural and Environmental Sciences, University of Milan, via G. Celoria 2, 20133 Milano, Italy

Contact the author*

Keywords

Vitis, root, δ13C, transpiration, plasticity, genetic architecture

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Culturable microbial communities associated with the grapevine soil in vineyards of La Rioja, Spain

The definition of soil health is complex due to the lack of agreement on adequate indicators and to the high variability of global soils. Nevertheless, it has been widely used as synonymous of soil quality for more than one decade, and there is a consensus warning of scientists that soil quality and biodiversity loss are occurring due to the traditional intensive agricultural practices.
In this work we monitored a set of soil parameters, both physicochemical and microbiological, in an experimental vineyard under three different management and land use systems: a) addition of external organic matter (EOM) to tilled soil; b) no tillage and plant cover between grapevine rows, and c) grapevines planted in rows running down the slope and tilled soil.

Physico-chemical properties of vine pruning residues with potential as enological additive

Grapes are one of the world’s primary fruit crops, and pruning activities generate high amounts of annual wood wastes [1]. These pruning shoots contain valuable phenolic compounds and could have numerous potential applications [1,2]. Consequently, the aim of this work was to evaluate the physico-chemical properties of vine pruning residues with potential as enological additives. For this purpose, grapevine shoots from 12 varieties grown in Chile were collected during the winter of 2021.

Development and validation of a free solvent UHPLC/MS-MS method to analyse melatonin and its precursors in Spanish commercial wines  

Melatonin is a bioactive compound present in foods and beverages such as wines. During alcoholic fermentation, yeast transforms tryptophan into certain indole compounds, including melatonin. This paper aims to develop and validate a free solvent analytical method by ultra-high performance liquid chromatography coupled with high resolution mass spectrometry (UHPLC/MS-MS) to determine melatonin and its precursors (L-tryptophan, tryptamine, serotonin, tryptophol, N-acetylserotonin, 5-hydroxytryptophan, and 3- indoleacetic) that appropriately prevent the matrix effect.

Polyphenol content of cork granulates at different steps of the manufacturing process of microagglomerated stoppers treated with supercritical CO2 used for wine bottling

The wine closure industry is mainly divided into three categories: screw caps, synthetic closures, and cork-based closures. Among this latter, microagglomerated cork stoppers treated with supercritical CO2 are now widely used, especially to avoid cork taint contaminations[1]. They are designed with cork granules obtained from cork offcuts of the punching process during the natural cork stoppers production. A previous study[2] showed that these stoppers released fewer polyphenols in 12 % (v/v) hydroalcoholic solution than natural cork stoppers.

Potential of new genetic resources to improve drought adaptation of grapevine rootstocks

Grapevines are grown mainly as grafts worldwide, but the rootstocks most commonly used were selected between the late 19th and early 20th centuries and are based on reduced genetic diversity[1]. In the context of climate change, it is indeed urgent to diversify the range of rootstocks with genotypes much more adapted to drier environments, than the existing ones[2]. The aim of this study was to evaluate the potential of new genetic resources for grapevine rootstock breeding programs. For this purpose, 12 American and Asian wild Vitis species (3 to 5 accessions per species = 50 accessions) were evaluated for their rooting ability and drought response.