terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 What to do to solve the riddle of vine rootstock induced drought tolerance

What to do to solve the riddle of vine rootstock induced drought tolerance

Abstract

Climate change will increase the frequency of water deficit situation in some European regions, by the increase of the evapotranspiration and the reduction of rainfalls during the growing cycle. This requires finding ways of adaptation, including the use of plant material which is more tolerant to drought. In addition to the varieties used as scions that result in the typicality of wines, rootstocks constitute a relevant way of adaptation to more stressful environmental conditions.

The rootstock genotype impacts grapevine functioning at three levels: the absorption of water, the water transport and the water consumption. The variability of root anatomy, root depth and water extraction capacity may explain water deficit responses differences observed or measured between rootstocks in pot or in field experiments. Whole root hydraulic conductance differed between sensitive and tolerant rootstocks. Vine water use are related to the leaf area and the vigor conferred, but also to regulatory processes, partially independent during the day and the night. Gas exchanges regulation along the day and night but also with the variation of the water status, i.e. the transpiration plasticity to water status, is in fact partially controlled by rootstocks.

Despite the empirical knowledge and the increasing interest dedicated research on grapevine rootstocks, the mechanisms involved in all these responses to water deficit remain poorly understood. Data from the literature and recorded in Bordeaux will be synthesized. Some challenges have to be met to get further crucial information about the traits conferring a higher adaptation to water deficit in order to speed up the selection of new rootstocks tolerant to drought. These challenges, i.e. the variability of the responses due to water status scenario (the intensity and the occurrence in the cycle of the water deficit), the choice of the traits measured and their plasticity, as well as rootstock scion interactions, will be discussed.

DOI:

Publication date: October 4, 2023

Issue: ICGWS 2023

Type: Article

Authors

Elisa Marguerit1, Louis Blois1, Marine Morel1, Davide Biancchi1, Jean-Pascal Tandonnet1, Marina de Miguel1, Gregory Gambetta1, Nathalie Ollat1

1 EGFV, University of Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV
2 Department of Agricultural and Environmental Sciences, University of Milan, via G. Celoria 2, 20133 Milano, Italy

Contact the author*

Keywords

Vitis, root, δ13C, transpiration, plasticity, genetic architecture

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Teinturier grapes: Valorization as a source of high-value compounds for the Chilean food industry

The agri-food industry is constantly searching for ingredients of high functional value, healthy and of natural origin. One species of particular interest is Vitis vinifera, due to its recognized antioxidant potential. Among the grape varieties, one group possesses these antioxidant compounds not only in the skin, but also in its pulp: Teinturier. The red grape has traditionally been used for color correction purposes in winemaking, however, its high antioxidant content transforms it into a raw material of high potential for new formulations of ingredients and foods for the health and wellness market.

Evaluation of Furmint clones in the Tokaj Wine Region

The ’Furmint’ is the most important grape variety in the Tokaj Wine Region, constituting around 65% of its vineyard area. Before the phylloxera disease many types were grown, but as selection started in the 20th century, its diversity dramatically narrowed. As a result, the cultivation of Furmint was based mainly on two heavy-cropping clones, T.85 and T.92 at the end of the ’80s. Aims of present clone research take into account that after solely quantity as target, quality emerged in the 1990’s and most recently, typicity appeared as more private estates began their own selection program.

Quantification of polysaccharides of variety Pomaces of the D.O.Ca Rioja

Pomace is one of the main residues generated by the wine industry and represents an environmental problem. Currently, there is a growing interest in the revaluation of these products because different bioactive compounds can be obtained from them, such as polyphenols, grape seed oils and polysaccharides. Red grape pomace can be an important source of polysaccharides, but they are currently little studied and even less with viable and environmental extraction processes (green extraction), such as flash extraction. The residual amount of the fraction rich in pectin (residual pulp) and component rich in hemicellulose in the pomace and the strength of association of the pectin with the cellulose-xyloglucan network depend on the degree of extractability of the polysaccharides in red winemaking and on the winemaking conditions.

Entomopathogenic nematodes application for controlling Lobesia botrana in grapevine and their impact on grapevine quality 

Entomopathogenic nematodes (EPN) are well-known biological control agents combined with specific adjuvants that now allow their use against aerial pests. Lobesia botrana (Lepidoptera: Tortricidae) is one of the major harmful pests detected in worldwide vineyards. Previous studies demonstrated that the EPNs Steinernema feltiae and S. carpocapsae could control L. botrana. The hypothesis was that the best combination of EPN-adjuvant/timing (season/temperatures) will support the use of EPN in the vineyard against L. botrana with no impact on the grape performance.

A phylogenomic study reveals the major dissemination routes of ‘Tempranillo Tinto’ in the Iberian Peninsula

‘Tempranillo Tinto’ is a black-berried Iberian cultivar that originated from a hybridization between cvs. ‘Benedicto’ and ‘Albillo Mayor’ [1]. Today, it is the third most widely grown wine grape cultivar worldwide with more than 200,000 hectares of vineyards mostly distributed along the Iberian Peninsula, where it is also known as ‘Cencibel’, ‘Tinta de Toro’, ‘Tinta Roriz’, and ‘Aragonez’, among other synonyms. Here, we quantified the intra-varietal genomic diversity in this cultivar through the study of 35 clones or ancient vines from seven different Iberian wine-making regions. A comparative analysis after Illumina whole-genome sequencing revealed the presence of 1,120 clonal single nucleotide variants (SNVs).