terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 What to do to solve the riddle of vine rootstock induced drought tolerance

What to do to solve the riddle of vine rootstock induced drought tolerance

Abstract

Climate change will increase the frequency of water deficit situation in some European regions, by the increase of the evapotranspiration and the reduction of rainfalls during the growing cycle. This requires finding ways of adaptation, including the use of plant material which is more tolerant to drought. In addition to the varieties used as scions that result in the typicality of wines, rootstocks constitute a relevant way of adaptation to more stressful environmental conditions.

The rootstock genotype impacts grapevine functioning at three levels: the absorption of water, the water transport and the water consumption. The variability of root anatomy, root depth and water extraction capacity may explain water deficit responses differences observed or measured between rootstocks in pot or in field experiments. Whole root hydraulic conductance differed between sensitive and tolerant rootstocks. Vine water use are related to the leaf area and the vigor conferred, but also to regulatory processes, partially independent during the day and the night. Gas exchanges regulation along the day and night but also with the variation of the water status, i.e. the transpiration plasticity to water status, is in fact partially controlled by rootstocks.

Despite the empirical knowledge and the increasing interest dedicated research on grapevine rootstocks, the mechanisms involved in all these responses to water deficit remain poorly understood. Data from the literature and recorded in Bordeaux will be synthesized. Some challenges have to be met to get further crucial information about the traits conferring a higher adaptation to water deficit in order to speed up the selection of new rootstocks tolerant to drought. These challenges, i.e. the variability of the responses due to water status scenario (the intensity and the occurrence in the cycle of the water deficit), the choice of the traits measured and their plasticity, as well as rootstock scion interactions, will be discussed.

DOI:

Publication date: October 4, 2023

Issue: ICGWS 2023

Type: Article

Authors

Elisa Marguerit1, Louis Blois1, Marine Morel1, Davide Biancchi1, Jean-Pascal Tandonnet1, Marina de Miguel1, Gregory Gambetta1, Nathalie Ollat1

1 EGFV, University of Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV
2 Department of Agricultural and Environmental Sciences, University of Milan, via G. Celoria 2, 20133 Milano, Italy

Contact the author*

Keywords

Vitis, root, δ13C, transpiration, plasticity, genetic architecture

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Analysis of volatile composition of interaction between the pathogen E. necator and two grapevine varieties

Volatile organic compounds (VOCs) are emitted by nearly all plant organs of the plants, including leaves. They play a key role in the communication with other organisms, therefore they are involved in plant defence against phytopathogens. In this study VOCs from grapevine leaves of two varieties of Vitis vinifera infected by Erysiphe necator were analysed. The varieties were selected based on their susceptibility to pathogen, Kishmish Vatkana has the Ren1 resistance gene and Zamarrica showed high susceptibility in previous trials.

Culturable microbial communities associated with the grapevine soil in vineyards of La Rioja, Spain

The definition of soil health is complex due to the lack of agreement on adequate indicators and to the high variability of global soils. Nevertheless, it has been widely used as synonymous of soil quality for more than one decade, and there is a consensus warning of scientists that soil quality and biodiversity loss are occurring due to the traditional intensive agricultural practices.
In this work we monitored a set of soil parameters, both physicochemical and microbiological, in an experimental vineyard under three different management and land use systems: a) addition of external organic matter (EOM) to tilled soil; b) no tillage and plant cover between grapevine rows, and c) grapevines planted in rows running down the slope and tilled soil.

Advancing grapevine science through genomic research

The seminar will examine the complexities and prospects of genomic research on Vitis species, characterize by exceptionally high heterozygosity and common interspecific gene flow. The seminar will showcase case studies highlighting the critical role of diploid genome references in grape research, specifically in areas such as aroma development, disease resistance, and domestication traits. It will also address the emerging focus on pangenomes within the Vitis genus, particularly in the context of genetic studies on naturally interbreeding populations.

Grape pomace, an active ingredient at the intestinal level: Updated evidence

Grape pomace (GP) is a winemaking by-product particularly rich in (poly)phenols and dietary fiber, which are the main active compounds responsible for its health-promoting effects. GP-derived products have been proposed to manage cardiovascular risk factors, including endothelial dysfunction, inflammation, hypertension, hyperglycemia, and obesity. Studies on the potential impact of GP on gut health are much more recent. However, it is suggested that, to some extent, this activity of GP as a cardiometabolic health-promoting ingredient would begin in the gastrointestinal tract as GP components (i.e., (poly)phenols and fiber) undergo extensive catabolism, mainly by the action of the intestinal microbiota, that gives rise to low-molecular-weight bioactive compounds that can be absorbed and utilized by the body.

Limiting magnesium availability: a novel approach to managing brettanomyces spoilage in winemaking

Brettanomyces is a world-renowned yeast that negatively impacts the chemical composition of wines through the production of metabolites that negatively impact the sensory properties of the final product. Its resilience in wine conditions and ability to produce off-flavors make it a challenge for winemakers. Currently, the primary control technique involves adding sulfur dioxide (SO2); however, some Brettanomyces strains are developing resistance to this preservative agent. [1] Therefore, new management strategies are necessary to control this spoilage yeast.