terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 What to do to solve the riddle of vine rootstock induced drought tolerance

What to do to solve the riddle of vine rootstock induced drought tolerance

Abstract

Climate change will increase the frequency of water deficit situation in some European regions, by the increase of the evapotranspiration and the reduction of rainfalls during the growing cycle. This requires finding ways of adaptation, including the use of plant material which is more tolerant to drought. In addition to the varieties used as scions that result in the typicality of wines, rootstocks constitute a relevant way of adaptation to more stressful environmental conditions.

The rootstock genotype impacts grapevine functioning at three levels: the absorption of water, the water transport and the water consumption. The variability of root anatomy, root depth and water extraction capacity may explain water deficit responses differences observed or measured between rootstocks in pot or in field experiments. Whole root hydraulic conductance differed between sensitive and tolerant rootstocks. Vine water use are related to the leaf area and the vigor conferred, but also to regulatory processes, partially independent during the day and the night. Gas exchanges regulation along the day and night but also with the variation of the water status, i.e. the transpiration plasticity to water status, is in fact partially controlled by rootstocks.

Despite the empirical knowledge and the increasing interest dedicated research on grapevine rootstocks, the mechanisms involved in all these responses to water deficit remain poorly understood. Data from the literature and recorded in Bordeaux will be synthesized. Some challenges have to be met to get further crucial information about the traits conferring a higher adaptation to water deficit in order to speed up the selection of new rootstocks tolerant to drought. These challenges, i.e. the variability of the responses due to water status scenario (the intensity and the occurrence in the cycle of the water deficit), the choice of the traits measured and their plasticity, as well as rootstock scion interactions, will be discussed.

DOI:

Publication date: October 4, 2023

Issue: ICGWS 2023

Type: Article

Authors

Elisa Marguerit1, Louis Blois1, Marine Morel1, Davide Biancchi1, Jean-Pascal Tandonnet1, Marina de Miguel1, Gregory Gambetta1, Nathalie Ollat1

1 EGFV, University of Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV
2 Department of Agricultural and Environmental Sciences, University of Milan, via G. Celoria 2, 20133 Milano, Italy

Contact the author*

Keywords

Vitis, root, δ13C, transpiration, plasticity, genetic architecture

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Aroma characterization of mold resistant base wines for sparkling wine produced in a warm-temperate area at two different altitudes

In a recent context where consumers pay an increasing attention to sustainability and eco-friendly aspects in the decision-making process, the use of the resistant varieties in the wine sector have returned to the attention. In this context, the use of mould-resistant grape varieties would be an opportunity for sparkling wine producers as it can reduced the pesticide utilization in grape management and hence production costs.
However, the use of the resistant varieties to produce the base wine may be strongly influenced due to its requirements for a particular balance between sugars and acidity to ensure the quality of the final product. In addition, the aromatic profile of base wine plays a crucial role in the perception of the quality of the sparkling wine.

Effects of heat and water stress on grapevine health: primary and secondary metabolism

Grapevine resilience to climate change has become one of the most pressing topics in the Viticulture & Enology field. Vineyard health demands understanding the mechanisms that explain the direct and indirect interactions between environmental stressors. The current climate change scenario, where drought and heat-wave are more frequent and intense, strongly demands improving our knowledge of environmental stresses. During a heatwave, the ambient temperature rises above the plant’s average tolerance threshold and, generally, above 35 oC plant’s adaptation to heat stress is activated.

Impact of temperature and solar radiation on grape composition variability in the Saint-Emilion winegrowing area 

Grape composition is strongly influenced by climate conditions. Their expected modifications in near future, notably because of increased temperatures, could significantly modify the biochemical composition of berries at harvest, and thus wine typicity and quality. Elevated temperatures favor sugar accumulation in grapes, enhance malic acid degradation and modify the amino acid content. They also reduce significantly anthocyanin accumulation in Merlot, leading to the imbalance between anthocyanins and sugars, while no significant effects on final anthocyanin levels were reported in Tempranillo[1] and finally affect aromas or aroma precursors.

Correlative study between degradation of rosé wine under accelerated conditions and under normal conditions

Several studies have tried to develop different methods to study the photodegradation of wine in an accelerated way, trying to elucidate the effect of light on the wine compounds[1]. In a previous study, our team developed a chamber that speeds up the photodegradation of rosé wine[2]. In the present work we have tried to establish a correlation between irradiation times in accelerated conditions and the natural exposure to the cycles of light that usually exist in markets or at home.

Photoprotective extracts from agri-food waste to prevent the effect of light in rosé wines 

Light is responsible for adverse reactions in wine including the formation of unpleasant flavors, loss of vitamins or photodegradation of anthocyanins. Among them, the riboflavin degradation leads to the formation of undesirable volatile compounds, known as light-struck taste. These photo-chemical reactions could be avoided by simply using opaque packaging. However, most rosé wines are kept in transparent bottles due to different commercial reasons. Some agri-food waste extracts have been studied for their photoprotective action which turn to be highly correlated with phenolic content [1].