terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 The exploitation of Croatian grapevine genetic resources for the breeding of new resistant cultivars 

The exploitation of Croatian grapevine genetic resources for the breeding of new resistant cultivars 

Abstract

Croatian viticulture is mainly based on native grapevine varieties susceptible to various diseases and pests, which leads to unsustainable use of large amounts of pesticides. The sustainable development of viticulture in the future will only be possible by increasing the resistance of the grapevine through the development of new resistant varieties. Breeding programs have been launched in the leading wine-growing countries to develop resistant varieties possessing high-quality levels. Native cultivars from Croatia are not included in the breeding programs of other countries. In 2015 a breeding program was started at the University of Zagreb Faculty of Agriculture. The long-term goal is to develop new varieties suitable for Croatian growing conditions, with stable and durable resistance using native germplasm and other sources of resistance.  

 

Native varieties Grk and  Dišeća ranina were selected as a starting point for the breeding program because they pose female flower type, aiming to develop breeding lines with female flowers. The source of resistance in the program’s first stage is the Panonia variety. After applying molecular markers in the population of seedlings expressing the high level of phenotypic resistance to downy and powdery mildew, several plants were detected that inherited all three resistant gene loci (Rpv3, Rpv12 – downy mildew resistance, Ren3 – powdery mildew resistance) from Panonia and female flower from chosen native varieties. They were included as mother plants in the program’s next step and were crossed to obtain breeding lines with additional resistant gene loci.

DOI:

Publication date: October 4, 2023

Issue: ICGWS 2023

Type: Article

Authors

Darko Preiner1,2*, Ivana Tomaz1,2, Iva Šikuten1,2, Zvjezdana Marković1,2, Petra Štambuk1,2, Jasminka Karoglan Kontić1,2, Domagoj Stupić1, Edi Maletić1,2

1University of Zagreb Faculty of Agriculture, Svetošimunska 25, Zagreb, Croatia
2 Center of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska 25, Zagreb, Croatia

Contact the author*

Keywords

grapevine breeding, genetic resources, resistant varieties

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Comparison of the effects of hormone- and natural-based elicitors on key metabolic pathways in cv. Tempranillo

One of the most important effects of climate change in wine-growing areas is the advance of phenological stages, especially concerning early berry ripening. In the hottest seasons, this results in a lack of synchrony between sugar and phenolic ripeness. In order to cope with this fact, a general effort is being made by researchers and growers aiming at delaying ripening through different strategies. One of the proposed approaches is the application of elicitors. This study aims to assess the effect at the transcriptomic level of application of three elicitors (Vitalfit, Fruitel, and Protone) in Tempranillo.

Performance of Selected Uruguayan Native Yeasts for Tannat Wine Production at Pilot Scale

The wine industry is increasing the demand for indigenous yeasts adapted to the terroir to produce unique wines that reflect the distinctive characteristics of each region. In our group, we have identified and characterized 60 native yeast strains isolated from a vineyard in Maldonado-Uruguay, in which three strains stood out: Saccharomyces cerevisiae T193FS, Saturnispora diversa T191FS, and Starmerella bacillaris T193MS. Their oenological potential was evaluated at a semi-pilot scale in Tannat must vinification in the wine cellar to have a more precise and representative evaluation of the final product.

Stomatal abundance in grapevine: developmental genes, genotypic variation, and physiology

Grapevine cultivation is threatened by the global warming, which combines high temperatures and reduced rainfall, impacting in wine quality and even plant survival. Breeding for varieties resilient to these challenges must address plant traits such as tolerance to supraoptimal temperatures and optimized water use efficiency while minimizing productivity and quality losses. Stomatal abundance (SA) determines the maximum leaf potential for transpiration and thus water loss and cooling. Since SA results from a developmental process during leaf emergence and growth, knowledge on the genetic control of this process would provide specific targets for modification.

Ability of lactic acid bacterial laccases to degrade biogenic amines and OTA in wine

Two of the most harmful microbial metabolites for human health that can be present in wines and either fermented or raw foods are biogenic amines (BA) and ochratoxine A (OTA). Winemakers are aware of the need to avoid their presence in wine by using different strategies, one of them is the use of enzymes. Some recombinant laccases have been characterized and revealed as potential tools to degrade these toxic compounds in wine[1], specifically biogenic amines[2].

Exploring the prevalence of esca-induced leaf symptoms in French vineyards and the role of climate: a national scale analysis

Esca, a severe trunk disease affecting vineyards, is caused by fungal pathogens that induce wood necrosis and decay, leaf symptoms, yield losses, and potentially a rapid death of the vine. The prevalence of this disease varies across years, regions, cultivars, and plot ages. Despite its significance in understanding and predicting dieback risk in different vineyards, the role of climate in trunk diseases remains a relatively unexplored research area. While some studies have demonstrated the impact of certain climatic conditions on the prevalence of the disease, they often focus on a limited number of plots and yield conflicting results.We conducted a statistical analysis, using a Bayesian approach on a national database comprising prevalence data of esca from over 500 different plots in France, spanning the years 2003 to 2022 and encompassing various cultivars.