terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 The exploitation of Croatian grapevine genetic resources for the breeding of new resistant cultivars 

The exploitation of Croatian grapevine genetic resources for the breeding of new resistant cultivars 

Abstract

Croatian viticulture is mainly based on native grapevine varieties susceptible to various diseases and pests, which leads to unsustainable use of large amounts of pesticides. The sustainable development of viticulture in the future will only be possible by increasing the resistance of the grapevine through the development of new resistant varieties. Breeding programs have been launched in the leading wine-growing countries to develop resistant varieties possessing high-quality levels. Native cultivars from Croatia are not included in the breeding programs of other countries. In 2015 a breeding program was started at the University of Zagreb Faculty of Agriculture. The long-term goal is to develop new varieties suitable for Croatian growing conditions, with stable and durable resistance using native germplasm and other sources of resistance.  

 

Native varieties Grk and  Dišeća ranina were selected as a starting point for the breeding program because they pose female flower type, aiming to develop breeding lines with female flowers. The source of resistance in the program’s first stage is the Panonia variety. After applying molecular markers in the population of seedlings expressing the high level of phenotypic resistance to downy and powdery mildew, several plants were detected that inherited all three resistant gene loci (Rpv3, Rpv12 – downy mildew resistance, Ren3 – powdery mildew resistance) from Panonia and female flower from chosen native varieties. They were included as mother plants in the program’s next step and were crossed to obtain breeding lines with additional resistant gene loci.

DOI:

Publication date: October 4, 2023

Issue: ICGWS 2023

Type: Article

Authors

Darko Preiner1,2*, Ivana Tomaz1,2, Iva Šikuten1,2, Zvjezdana Marković1,2, Petra Štambuk1,2, Jasminka Karoglan Kontić1,2, Domagoj Stupić1, Edi Maletić1,2

1University of Zagreb Faculty of Agriculture, Svetošimunska 25, Zagreb, Croatia
2 Center of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska 25, Zagreb, Croatia

Contact the author*

Keywords

grapevine breeding, genetic resources, resistant varieties

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Tackling the 3D root system architecture of grapevines: a new phenotyping pipeline based on photogrammetry

Plant roots fulfil important functions as they are responsible for the acquisition of water and nutrients, for anchorage and stability, for interaction with symbionts and, in some cases, for the storage of carbohydrates. These functions are associated with the Root System Architecture (RSA, i.e. the form and the spatial arrangement of the roots in the soil). The RSA results from several biological processes (elongation, ramification, mortality…) genetically determined but with high structural plasticity.

Towards the understanding of wine distillation in the production of brandy de Jerez. Chemical and sensory characterization of two distillation methods: continuous and batch distillation

Brandy de Jerez (BJ) is a spirit drink made exclusively from spirits and wine distillates and is characterized by the use of casks for aging that previously contained Sherries. The quality and sensory complexity of BJ depend on the raw materials and some factors: grape variety, conditions during processing the wine and its distillation, as well as the aging in the cask. Therefore, the original compounds of the grapes from which it comes are of great interest being in most cases the Airén variety. Their relationship with the quality of the musts and the wines obtained from them has been studied (1) and varies each year of harvest depending on the weather conditions (2).

Metatranscriptomic analysis of “aszú” berries: the potential role of the most important species of the grape microbiota in the aroma of wines with noble rot

Botrytis cinerea has more than 1200 host plants and is one of the most important plant pathogens in viticulture. Under certain environmental conditions, it can lead to the development of a noble rot, which results in a specific metabolic profile, altering physical texture and chemical composition. The other microbes involved in this process and their functional genes are poorly characterised. We have generated metatranscriptomic [1,2] and DNA metabarcoding data from three months of the Furmint grape variety, representing the four phases of noble rot, from healthy berries to completely dried berries.

Effect of two water deficit regimes on the agronomic response of 12 grapevine varieties cultivated in a semi-arid climate

The Mediterranean basin is one of the most vulnerable regions to Climate Change effects. According to unanimous forecasts, the vineyards of Castilla-La Mancha will be among the most adversely affected by rising temperatures and water scarcity during the vine’s vegetative period. One potential strategy to mitigate the negative impacts of these changes involves the identification of grapevine varieties with superior water use efficiency, while ensuring satisfactory yields and grape quality.

Chemical profiling and sensory analysis of wines from resistant hybrid grape cultivars vs conventional wines

Recently, there has been a shift toward sustainable wine production, according to EU policy (F2F and Green Deal), to reduce pesticide usage, improve workplace health and safety, and prevent the impacts of climate change. These trends have gained the interest of consumers and winemakers. The cultivation of disease resistant hybrid grape cultivars (DRHGC), known as ‘PIWI’ grapes can help with these objectives [1]. This study aimed to profile white and red wines produced from DRHGC in South Tyrol (Italy). Wines produced from DRHGCs were compared with conventional wines produced by the same wineries. The measured parameters were residual sugars, organic acids, alcohol content, pigments and other phenolics by LC-QqQ/MS, colorimetric indexes (CIELab); and volatile profiles (HS-SPME-GCxGC-ToF/MS [2]).