terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Evaluation of the effects of pruning methodology on the development of young vines 

Evaluation of the effects of pruning methodology on the development of young vines 

Abstract

Grapevine pruning is one of the most important practices in the vineyards. Winegrowers use it to provide the vines the shape needed, or to maintain it once achieved, and also to balance vegetative growth and fruit production. In the last decades, careless pruning has been blamed, among other factors, as responsible of the vineyard decay that is been observed even in young vines. However, to our knowledge, there is a lack of systematic research trying to elucidate to which extent the pruning method used affects plant development or its susceptibility to grapevine trunk diseases (GTD). Within this context, the aim of this work is to study the influence of different pruning method strategies on the development of field-planted young vines. Two trials were carried out in commercial vineyards planted in 2019 in La Rioja and Navarra, where three pruning criteria were applied: i) control pruning, following the criteria of the winegrowers in the area (CONT); ii) respectful pruning, paying attention to the preferential sap flow pathway and leaving protective wood in the cuts (RESP); and iii) aggressive pruning, not paying attention to sap flow pathways and not leaving protective wood (AGGR). In general, RESP pruning tended to increase shoot growth compared to CONT and AGGR pruning, obtaining higher values of pruning wood weight in winter, and reaching greater yield in the first harvest. In conclusion, the different pruning strategies applied have a significant effect on growth, even though more years of experimentation would be necessary to evaluate their impact on the agronomic behavior and general performance and longevity of the vineyard.

The project (EFA324/19 VITES QUALITAS) has been 65% cofinanced by the European Regional Development Fund (ERDF) through the Interreg V-A Spain-France-Andorra programme (POCTEFA 2014-2020).

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Mónica Galar1*, Nazareth Torres1-2, Bárbara Sebastián3, Julián Palacios3, Nahiara Juanena1, Ana Villa-Llop1-4, C. Dewasme5, J.P. Roby5, L. Gonzaga Santesteban1-2

1Dpt. of Agronomy, Biotechnology and Food, Public University of Navarre (UPNA), Pamplona, Navarra.
2Institute for Multidisciplinary Research in Applied Biology (IMAB), Pamplona, Navarra.
3Viticultura Viva, S. Martín de Unx, Navarra.
4Vitis Navarra, Road NA132, km. 18, 31251 Larraga, Navarra.
5ISVV, UMR EGFV, 210 Chemin de Leysotte CS50008 33 882 Villenave d’Ornon

Contact the author*

Keywords

grapevine pruning, grapevine trunk disease, longevity

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Understanding the impact of rising temperatures due to climate change on aromatic compositions in Malbec wines from Mendoza, Argentina

Mendoza is one of Argentina’s most important and outstanding wine regions producing the renowned Malbec wines due to its optimal soil and weather conditions. However, the effects of 21st-century climate change would negatively impact Malbec wines quality. This study investigated the effect of temperature increase and the impact of plant hormone abscisic acid (ABA) used to mitigate the negative effect of temperature increase on Malbec wines aromatic composition through GC-MS. Four treatments were applied on vines at field condition: Control, Control + 3 ºC, ABA and ABA + 3 ºC.

Phenolic extraction and dissolved oxygen concentration during red wines fermentations with Airmixig M.I.™

During red wine fermentation, the extraction of phenolics compounds and sufficient oxygen provision are critical for wine quality [1,2]. In this trial, we aimed at evaluating the kinetics of phenolic extraction and dissolved oxygen during red wine fermentations using the airmixing system. Twenty lots of red grape musts were fermented in 300.000 L tanks, equipped with airmixing, using two injection regimes (i.e., high and low intensity, and high and low daily frequency). An oxygen analyzer was introduced into the tanks in order to record the concentration of dissolved oxygen over time.

Effect of rising atmospheric CO2 levels on grapevine yield and composition by the middle of the 21st century: what can we learn from the VineyardFACE?

Atmospheric CO2 levels have been rising continuously since the industrial revolution, affecting crop physiology, yield and quality of harvest products, and grapevine is no exception [1]. Most of previously reported studies used potted plants in controlled environments, and explored grapevine response to relatively high CO2 levels, 700 ppm or more. The vineyardFACE, established in Geisenheim in 2012, uses a free air carbon dioxide enrichment (FACE) system to simulate a moderate (ambient +20%) increase in atmospheric CO2 in a vineyard planted with cvs. Cabernet-Sauvignon and Riesling grafted on rootstock 161-49 Couderc and SO4, respectively.

Effect of foliar application of urea and nano-urea on the cell wall of Monastrell grape skins

The foliar application of urea has been shown to be able to satisfy the specific nutritional needs of the vine as well as to increase the nitrogen composition of the must. On the other hand, the use of nanotechnology could be of great interest in viticulture as it would help to slow down the release of urea and protect it against possible degradation. Several studies indicate that cell wall synthesis and remodeling are affected by nitrogen availability.

Grapevine adaptation to drought and resistance to Neofusicoccum parvum, causal agent of Botryosphaeria dieback

The sustainability of viticulture in response to climate change has been addressed mainly considering agronomic impacts, such as water management and diseases, either separately or together.
In grapevines, there is strong evidence that different genotypes respond differently to biotic and abiotic stresses. A screening was conducted on various local cultivars in response to drought and Neofusicoum parvum infection aiming to evaluate their susceptibility to abiotic stress and resistance to fungal diseases.