terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Evaluation of terroir suitability for vine cultivation in new areas using geographic multi-criteria decision support

Evaluation of terroir suitability for vine cultivation in new areas using geographic multi-criteria decision support

Abstract

Based on historical vine cultivation, the recent development of wine production in Drama wine region (Greece) has led to vine cultivation expansion of white and red varieties. The current cultivation of 500 ha of vineyards is expected to increase in the coming years. Natural terroir units (NTU) have been designed recently to support the production of high quality wines in the region [1]. The aim of this work is to evaluate the relevancy of the proposed NTUs regarding their suitability to produce wines of specific sensorial identity, and to provide guidelines for correct site selection for the expanding wine industry of the region. The FAO Framework for Land Suitability Analysis was adapted to cover the main categories of input data: soil, climate, topography and other environmental properties [2]. The weights of each input data category have been developed with Analytical Hierarchical Process (AHP) based on interviews with the viticulturalists of the main wine producers. The geographic analysis was performed using the Agricultural Land Use Evaluation System (ALUES), which is based on the open-source statistical software R. The results reveal that the majority of the agricultural area is marginally to adequately suitable for the main white vine varieties currently cultivated, namely cv. Sauvignon blanc, with the exception of the cooler areas. On the contrary, red varieties (notably cv Cabernet Sauvignon) were  found to be more suitable to occupy the central part of the wine producing area. Nevertheless, it is possible to allocate white varieties to a wider range of sites with the adaptation of viticultural management.

Acknowledgements: The work presented is cofinanced by the ERDF and Greek national funds.

References:

1)  Karapetsas, N. et al, (2023). Delineating Natural Terroir Units in Wine Regions Using Geoinformatics. Agriculture, 13, 629, DOI:10.3390/agriculture13030629

2)  Bilas, G. et al., (2022). Land Suitability Analysis as a Tool for Evaluating Soil-Improving Cropping Systems. Land, 11, 2200, DOI:10.3390/land11122200

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Thomas Alexandridis1*, Nikolaos Karapetsas1, George Bilas1, Sefafeim Theocharis2, Stefanos Koundouras2

1 Laboratory of Remote Sensing, Spectroscopy and Geographical Information Systems, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
2 Laboratory of Viticulture, School of Agriculture, Aristotle University of Thessaloniki, 54124, Greece

Contact the author*

Keywords

DSS, land suitability analysis, geographic information systems

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Crown procyanidin quantification in red wines, rosé wines and Port wines

Condensed grape tannins play a major role in the organoleptic properties and quality of red wine. Recently, a new sub-family of macrocyclic condensed tannins has been identified in red wine and named “crown tannins”. Indeed, the first compound of the family identified and characterised by NMR was the crown procyanidin tetramer which is composed of a macrocyclic structure composed of four (-)-epicatechins link together by B-type interflavanoid linkage in the following an alternative sequences of C4-C8 and C4-C6 linkage. The 3D structure of this unusual crown procyanidin family reveals a central cavity in the molecule [1].

A novel approach for the identification of new biomarkers of wine consumption in human urine using untargeted metabolomics

Wine is one of the most representative components of Mediterranean diet. Moderate wine intake together with food, has been positively correlated with reduced risk of many chronic diseases. This beneficial effect seems to be ascribed to elevated polyphenolic content of wine [1]. Traditional approaches for the identification of wine biomarkers consumption include targeted metabolomics that focuses on the quantification of well-defined metabolites, losing a valuable information about a massive number of compounds. On the other hand, untargeted metabolomics can disclose a large quantity of signals corresponding to potential biomarkers in a single analysis with high sensitivity and resolution.

Bioprotection of grape must by Metschnikowia sp.: genericity and mechanism

The market trend heads to food products with less chemical inputs, including in oenology. During the winemaking process, sulfites are commonly use to avoid microbiological contamination and stabilization of the wine thanks to its antimicrobial and antioxidant activities. Nevertheless, this use is not without consequences on human health and environment, leading for example to allergic reaction and pollution. A biological alternative to these sulfites has emerges: the bioprotection.

Volatilome in grapevine leaves is defined by the variety and modulated by mycorrhizal symbiosis

Volatile organic compounds (VOCs) constitute a diverse group of secondary metabolites key for the communication of plants with other organisms and for their adaptation to environmental and biotic stresses. The emission of these compounds through leaves is also affected by the interaction of plants with symbiotic microorganisms, arbuscular mycorrhizal fungi (AMF) among them [1]. Our objective was to know the concentration and profile of VOCs emitted by the leaves of two grapevine varieties (Tempranillo, T, and Cabernet Sauvignon, CS, grafted onto R110 rootstocks), inoculated or not with a consortium of five AMF (Rhizophagus irregularis, Funneliformis mosseae, Septoglomus deserticola, Claroideoglomus claroideum and C. etunicatum).

A sensometabolomic approach to understand wine mouthfeel percepts

Targeted analytical methods can overlook compounds that are a priori unknown to play a role in the mouthfeel sensations. This limitation can be overcome with the information provided by untargeted metabolomic analysis using UPLC‐QTOF-MS. To this end, an untargeted metabolomic approach applied to 42 red wines has allowed development of a model with predictive capacity by cross-validation for the “dry”, “oily” and “unctuous” sensations perceived by a sensory panel. The optimal PLS model for “dry” retained compounds with positive regression coefficients (≥ 0.17) including a trimer procyanidin, a peptide, and four anthocyanins.