terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Predicting provenance and grapevine cultivar implementing machine learning on vineyard soil microbiome data: implications in grapevine breeding

Predicting provenance and grapevine cultivar implementing machine learning on vineyard soil microbiome data: implications in grapevine breeding

Abstract

The plant rhizosphere microbial communities are an essential component of plant microbiota, which is crucial for sustaining the production of healthy crops. The main drivers of the composition of such communities are the growing environment and the planted genotype. Recent viticulture studies focus on understanding the effects of these factors on soil microbial composition since microbial biodiversity is an important determinant of plant phenotype, and of wine’s organoleptic properties. Microbial biodiversity of different wine regions, for instance, is an important determinant of wine terroir. While conventional methods for microbiome analysis are extensively used, application of modern Artificial Intelligence (AI) based methods could unravel non-linear associations between microbial taxa and environmental/plant genetic factors. Here we compare the performance of shallow and Deep Machine Learning methods to predict the geographical provenance and the planted grape cultivar solely based on the soil microbiota. We used 885 previously published microbial amplicon-sequencing datasets (16S) collected from vineyards located in 13 countries across 4 continents and planted with 34 Vitis vinifera cultivars representing the largest collection of vineyard microbiomes analyzed to date. This research also aimed at addressing some common challenges associated with most ML-based studies such as easy availability of models to non-technical researchers which is necessary for research reproducibility. To facilitate this, the models built in this study will be available through a GUI-based containerized web platform. Also, to provide compatibility of processed data from other 16S studies, a computational step will be included that merge the features either by taxonomy or sequence identity. This study will be beneficial in several ways such as inferring lost/mislabeled samples, identifying important location-specific and cultivar-specific taxa. Ultimately, this approach could be implemented for the identification of the genes regulating host/microbe interactions, which will provide valuable targets for breeding programs aimed at producing more sustainable crops.  

Acknowledgements: This study was supported by the National Institute of Food and Agriculture, AFRI Competitive Grant Program Accession number 1018617, and the National Institute of Food and Agriculture, United States Department of Agriculture, Hatch Program accession number 1020852.

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Carlos M. Rodríguez López1*, Lakshay Anand1

1Environmental Epigenomics and Genomics Group, Department of Horticulture, College of Agriculture, Food and environment, University of Kentucky, Lexington, Kentucky, USA

Contact the author*

Keywords

rhizosphere microbiome, provenance, plant-microbiome interactions, breeding, machine learning

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Perception, liking and emotional response of tropical fruit aromas in Chardonnay wines

Tropical fruit aromas in wines are thought to be important to wine consumers, although there is little research to confirm this statement. With so many wine styles available, it has become important to understand the qualities that are desirable to consumers and how to achieve those qualities. Thiols and esters are compounds that have been found to cause tropical fruit aromas in chardonnay (ref). Fermentation temperature gradients and skin contact were found to increase these compounds using micro scale fermentations. This work aimed to scale up these fermentations/operations to determine if the desired tropical fruit aromas could still be achieved and if there is a perceivable difference in tropical fruit aromas, liking, and emotional response in the wines at the consumer level.

Volatile composition of Cabernet Sauvignon wines from Argentina, Portugal and Spain

Cabernet Sauvignon is one of the most cultivated grape varieties worldwide being grown in different environmental conditions due to its excellent adaptability. Volatile compounds deeply contribute to the sensory properties of wines therefore to wine quality. The aim of this work was to compare the aroma profile of Cabernet Sauvignon wines from different geographical areas and climatic conditions, namely from Argentina, Portugal and Spain, from the vintage 2022. In addition, the volatile composition of the Cabernet Sauvignon Portuguese wines from three vintages was evaluated.

Evaluation of Furmint clones in the Tokaj Wine Region

The ’Furmint’ is the most important grape variety in the Tokaj Wine Region, constituting around 65% of its vineyard area. Before the phylloxera disease many types were grown, but as selection started in the 20th century, its diversity dramatically narrowed. As a result, the cultivation of Furmint was based mainly on two heavy-cropping clones, T.85 and T.92 at the end of the ’80s. Aims of present clone research take into account that after solely quantity as target, quality emerged in the 1990’s and most recently, typicity appeared as more private estates began their own selection program.

Analysis of volatile composition of interaction between the pathogen E. necator and two grapevine varieties

Volatile organic compounds (VOCs) are emitted by nearly all plant organs of the plants, including leaves. They play a key role in the communication with other organisms, therefore they are involved in plant defence against phytopathogens. In this study VOCs from grapevine leaves of two varieties of Vitis vinifera infected by Erysiphe necator were analysed. The varieties were selected based on their susceptibility to pathogen, Kishmish Vatkana has the Ren1 resistance gene and Zamarrica showed high susceptibility in previous trials.

Development and validation of a free solvent UHPLC/MS-MS method to analyse melatonin and its precursors in Spanish commercial wines  

Melatonin is a bioactive compound present in foods and beverages such as wines. During alcoholic fermentation, yeast transforms tryptophan into certain indole compounds, including melatonin. This paper aims to develop and validate a free solvent analytical method by ultra-high performance liquid chromatography coupled with high resolution mass spectrometry (UHPLC/MS-MS) to determine melatonin and its precursors (L-tryptophan, tryptamine, serotonin, tryptophol, N-acetylserotonin, 5-hydroxytryptophan, and 3- indoleacetic) that appropriately prevent the matrix effect.