terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Predicting provenance and grapevine cultivar implementing machine learning on vineyard soil microbiome data: implications in grapevine breeding

Predicting provenance and grapevine cultivar implementing machine learning on vineyard soil microbiome data: implications in grapevine breeding

Abstract

The plant rhizosphere microbial communities are an essential component of plant microbiota, which is crucial for sustaining the production of healthy crops. The main drivers of the composition of such communities are the growing environment and the planted genotype. Recent viticulture studies focus on understanding the effects of these factors on soil microbial composition since microbial biodiversity is an important determinant of plant phenotype, and of wine’s organoleptic properties. Microbial biodiversity of different wine regions, for instance, is an important determinant of wine terroir. While conventional methods for microbiome analysis are extensively used, application of modern Artificial Intelligence (AI) based methods could unravel non-linear associations between microbial taxa and environmental/plant genetic factors. Here we compare the performance of shallow and Deep Machine Learning methods to predict the geographical provenance and the planted grape cultivar solely based on the soil microbiota. We used 885 previously published microbial amplicon-sequencing datasets (16S) collected from vineyards located in 13 countries across 4 continents and planted with 34 Vitis vinifera cultivars representing the largest collection of vineyard microbiomes analyzed to date. This research also aimed at addressing some common challenges associated with most ML-based studies such as easy availability of models to non-technical researchers which is necessary for research reproducibility. To facilitate this, the models built in this study will be available through a GUI-based containerized web platform. Also, to provide compatibility of processed data from other 16S studies, a computational step will be included that merge the features either by taxonomy or sequence identity. This study will be beneficial in several ways such as inferring lost/mislabeled samples, identifying important location-specific and cultivar-specific taxa. Ultimately, this approach could be implemented for the identification of the genes regulating host/microbe interactions, which will provide valuable targets for breeding programs aimed at producing more sustainable crops.  

Acknowledgements: This study was supported by the National Institute of Food and Agriculture, AFRI Competitive Grant Program Accession number 1018617, and the National Institute of Food and Agriculture, United States Department of Agriculture, Hatch Program accession number 1020852.

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Carlos M. Rodríguez López1*, Lakshay Anand1

1Environmental Epigenomics and Genomics Group, Department of Horticulture, College of Agriculture, Food and environment, University of Kentucky, Lexington, Kentucky, USA

Contact the author*

Keywords

rhizosphere microbiome, provenance, plant-microbiome interactions, breeding, machine learning

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Organic mulches slightly influence wine phenolic composition and sensorial properties

Grapevines have traditionally been grown in semi-arid areas, but viticulture is now compromised by climate change. Therefore, it is necessary to implement environmentally friendly viticulture practices to adapt grapevines to current climatic conditions. In this context, organic mulches offer many benefits, such as reduced soil erosion and increased organic matter, soil water content and crop productivity. However, these practices must not compromise grape and wine quality. Therefore, the objective of this study was to evaluate the effect on wine physicochemical and phenolic composition and sensorial properties of different soil management practices on the vine row. Over four years, five soil treatments were examined in two different vineyards.

Typicality of Rioja wines: identification of sensory profiles for the three subregions of DOCa Rioja

Within the DOCa Rioja three main production areas are differentiated: Rioja Alta (RA), Rioja Alavesa (RAv) and Rioja Oriental (RO). They are three diverse territories with particular characteristics that are claimed to give rise to differentiated profiles. The present work aims at evaluating the sensory diversity of young commercial red wines in these three subregions. Therefore 30 young red wines (mainly Tempranillo and vintage 2021), ten from each subregion, were sensory described following a non-verbal free sorting task and a verbal free comment task by 32 well-established Rioja winemakers.

Adsorption of tetraconazole by organic residues and vineyard organically-amended soils 

Spain is the country with the largest wine-producing area in the EU and its productivity is largely controlled applying fungicides. However, residues of these compounds can move and contaminate surface and groundwater. The objective of this work was to evaluate the capacity of bioadsorbents from different origin to adsorb and immobilize tetraconazole by themselves or when applied as organic soil amendment, and to prevent soil and water contamination by this fungicide. The adsorption of tetraconazole by 3 organic residues: spent mushroom substrate (SMS), green compost (GC) and vine pruning sawdust (VP), as well as by vineyard soils unamended and amended individually with these residues at 1.5% (w/w) was evaluated using the batch equilibrium technique.

Evaluation of interception traps for capture of Xylotrechus arvicola (Coleoptera: Cerambycidae) in vineyards varieties from Protected Denomination of Origin León

Xylotrechus arvicola (Coleoptera: Cerambycidae) is a pest in vineyards (Vitis vinifera) in the main Spain wine-producing regions with Protected Denomination of Origin (PDO). The action of the larvae, associated to the spreading of wood fungi, causes damage especially in important varieties of V. vinifera. X. arvicola females lay eggs concentrated in cracks or under the rhytidome in the wood vines, which allows the emerging larvae to get into the wood and make galleries inside the plant being then necessary to prune intensively or to pull up the bored plants (1). The objective of the study was to evaluate captures of X. arvicola insects in five varieties of V. vinifera in PDO León.

Exploring intra-vineyard variability with sensor- and molecular-based approaches 

The application of remote and proximal sensing is a fast and efficient method to monitor grapevine vegetative and physiological parameters and is considered valuable to derive information on associated yield and quality traits in the vineyard. Further details can be obtained by the application of molecular analysis at the gene expression level aiming at elucidating how pathways controlling the formation of different grape quality traits are influenced by spatial variability. This work aims at evaluating intra-vineyard variability in grape composition at harvest and at comparing this with remotely sensed canopy vegetation data and molecular-based approaches.