terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effect of rising atmospheric CO2 levels on grapevine yield and composition by the middle of the 21st century: what can we learn from the VineyardFACE?

Effect of rising atmospheric CO2 levels on grapevine yield and composition by the middle of the 21st century: what can we learn from the VineyardFACE?

Abstract

Atmospheric CO2 levels have been rising continuously since the industrial revolution, affecting crop physiology, yield and quality of harvest products, and grapevine is no exception [1]. Most of previously reported studies used potted plants in controlled environments, and explored grapevine response to relatively high CO2 levels, 700 ppm or more. The vineyardFACE, established in Geisenheim in 2012, uses a free air carbon dioxide enrichment (FACE) system to simulate a moderate (ambient +20%) increase in atmospheric CO2 in a vineyard planted with cvs. Cabernet-Sauvignon and Riesling grafted on rootstock 161-49 Couderc and SO4, respectively. Using this experimental setup, we report a 3 years survey of grape yield, and berry composition responses to a moderate increase in ambient CO2. An increase in net assimilation in leaves was observed for both cultivars, as well as a significant increase in fruit yield per vine. Berry size was not significantly affected, even though a general trend of larger berries was noted under elevated CO2. Berry ripening dynamics and composition at harvest were largely unaffected by the CO2 level increase, with the noticeable exception that anthocyanin levels tended to be lower under elevated CO2, compared to ambient. Profiling of central carbon metabolism intermediates and branching points to secondary metabolism pathways confirmed this result in both cultivars. Must terpene content analysis in Riesling showed little impact of elevated CO2, suggesting that its aromatic potential was probably unaffected. In conclusion, our results indicate that, although predicted mid-century CO2 levels do have an impact on grapevine yield, grape composition and oenological potential will probably be largely unaffected. However, it is noteworthy that non significant but consistent trends have been observed throughout the years, suggesting that the continuous rise in CO2 during the second half of the 21st century may finally overcome berry metabolic plasticity and acclimation to elevated CO2.

Acknowledgements: This work was supported by a PhD grant from the German-French University to C. Kahn (grant # DGSEIP/A1-3 N°2019-0203).

References:

1)  Clemens M.E. et al. (2022) Effects of elevated atmospheric carbon dioxide on the vineyard system of Vitis vinifera: a review. Am. J. Vitic. Enol. 73: 1-10, DOI 10.5344/ajev.2021.21029

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Eric Gomès*1, Cécile Kahn1, Susanne Tittmann2, Ghislaine Hilbert-Masson1, Regina Feil3, Christel Renaud1, John Lunn3, Manfred Stoll2

1EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33140 Villenave d’Ornon, France
2Department of General and Organic viticulture, Geisenheim University, Von-Lade Straße, Geisenheim, Germany
3Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Potsdam-Golm, D-14476 Potsdam-Golm, Germany

Contact the author*

Keywords

grapevine yield, berry composition, berry ripening, Free Air Carbon dioxide Enrichment

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Addition of glutathione-rich inactivated yeasts to white musts: effects on wine composition and sensory quality

Glutathione plays a key role in preventing some oxidative processes during winemaking. This molecule limits the must enzymatic oxidation, reacts with caffeic acid and generates a colourless compound that prevents subsequent browning. It also has a protective effect on wine aroma, preventing the oxidation of the volatile compounds with a high sensory impact.

INTEGRAPE guidelines and tools: an effort of COST Action CA17111

INTEGRAPE was a European interdisciplinary network for “data integration to maximize the power of omics for grapevine improvement” (CA17111, https://integrape.eu/), funded by the European COST Association from September 2018 to 2022. This Action successfully developed guidelines and tools for data management and promoted the best practices in grapevine omics studies with a holistic future vision of: “Imagine having all data on grapevine accessible in a single place”.

Influence of different Lachancea thermotolerans strains in wine acidity

Wine acidity is a parameter of great importance that influences different quality factors of the product such as biological stability or organoleptic characteristics. In the current context of climate change, which gives rise to wines with higher levels of ethanol and lower acidity, the biological acidification with yeast species such as Lachancea thermotolerans could be a solution.
In this work, the effect of the inoculation of different L. thermotolerans on the acidity of wine was studied.

The potential of some native varieties of Argentina for the production of sparkling wines. Effect of lees contact time 

Grapevine varieties from South-America, commonly known as criollas, originated because of the natural crossbreeding of grapevine varieties brought by the Spaniards. The objective of this work was to evaluate the potential of some varieties to produce sparkling wines considering the effect of lees contact time. The following varieties were used: Moscatel Rosado, Criolla Chica, Pedro Gimenez, Blanca Oval, Canelón, and the European variety Chardonnay (control), planted in the ampelographic collection of EEA Mendoza INTA (Argentina). Pilot-scale vinifications were carried out to obtain the base wines, in 20 L glass containers. The second fermentation was performed through the traditional method.

Potential of new genetic resources to improve drought adaptation of grapevine rootstocks

Grapevines are grown mainly as grafts worldwide, but the rootstocks most commonly used were selected between the late 19th and early 20th centuries and are based on reduced genetic diversity[1]. In the context of climate change, it is indeed urgent to diversify the range of rootstocks with genotypes much more adapted to drier environments, than the existing ones[2]. The aim of this study was to evaluate the potential of new genetic resources for grapevine rootstock breeding programs. For this purpose, 12 American and Asian wild Vitis species (3 to 5 accessions per species = 50 accessions) were evaluated for their rooting ability and drought response.