terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effect of rising atmospheric CO2 levels on grapevine yield and composition by the middle of the 21st century: what can we learn from the VineyardFACE?

Effect of rising atmospheric CO2 levels on grapevine yield and composition by the middle of the 21st century: what can we learn from the VineyardFACE?

Abstract

Atmospheric CO2 levels have been rising continuously since the industrial revolution, affecting crop physiology, yield and quality of harvest products, and grapevine is no exception [1]. Most of previously reported studies used potted plants in controlled environments, and explored grapevine response to relatively high CO2 levels, 700 ppm or more. The vineyardFACE, established in Geisenheim in 2012, uses a free air carbon dioxide enrichment (FACE) system to simulate a moderate (ambient +20%) increase in atmospheric CO2 in a vineyard planted with cvs. Cabernet-Sauvignon and Riesling grafted on rootstock 161-49 Couderc and SO4, respectively. Using this experimental setup, we report a 3 years survey of grape yield, and berry composition responses to a moderate increase in ambient CO2. An increase in net assimilation in leaves was observed for both cultivars, as well as a significant increase in fruit yield per vine. Berry size was not significantly affected, even though a general trend of larger berries was noted under elevated CO2. Berry ripening dynamics and composition at harvest were largely unaffected by the CO2 level increase, with the noticeable exception that anthocyanin levels tended to be lower under elevated CO2, compared to ambient. Profiling of central carbon metabolism intermediates and branching points to secondary metabolism pathways confirmed this result in both cultivars. Must terpene content analysis in Riesling showed little impact of elevated CO2, suggesting that its aromatic potential was probably unaffected. In conclusion, our results indicate that, although predicted mid-century CO2 levels do have an impact on grapevine yield, grape composition and oenological potential will probably be largely unaffected. However, it is noteworthy that non significant but consistent trends have been observed throughout the years, suggesting that the continuous rise in CO2 during the second half of the 21st century may finally overcome berry metabolic plasticity and acclimation to elevated CO2.

Acknowledgements: This work was supported by a PhD grant from the German-French University to C. Kahn (grant # DGSEIP/A1-3 N°2019-0203).

References:

1)  Clemens M.E. et al. (2022) Effects of elevated atmospheric carbon dioxide on the vineyard system of Vitis vinifera: a review. Am. J. Vitic. Enol. 73: 1-10, DOI 10.5344/ajev.2021.21029

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Eric Gomès*1, Cécile Kahn1, Susanne Tittmann2, Ghislaine Hilbert-Masson1, Regina Feil3, Christel Renaud1, John Lunn3, Manfred Stoll2

1EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33140 Villenave d’Ornon, France
2Department of General and Organic viticulture, Geisenheim University, Von-Lade Straße, Geisenheim, Germany
3Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Potsdam-Golm, D-14476 Potsdam-Golm, Germany

Contact the author*

Keywords

grapevine yield, berry composition, berry ripening, Free Air Carbon dioxide Enrichment

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

The potential of some native varieties of Argentina for the production of sparkling wines. Effect of lees contact time 

Grapevine varieties from South-America, commonly known as criollas, originated because of the natural crossbreeding of grapevine varieties brought by the Spaniards. The objective of this work was to evaluate the potential of some varieties to produce sparkling wines considering the effect of lees contact time. The following varieties were used: Moscatel Rosado, Criolla Chica, Pedro Gimenez, Blanca Oval, Canelón, and the European variety Chardonnay (control), planted in the ampelographic collection of EEA Mendoza INTA (Argentina). Pilot-scale vinifications were carried out to obtain the base wines, in 20 L glass containers. The second fermentation was performed through the traditional method.

Qualitative and productive characterization of a minority variety: ‘Branco lexítimo’ in DO Ribeira Sacra (Spain)

The actual climate changes, together with the strong regulation of the European Union and Spanish government, in search of sustainable viticulture, have forced the recovery of minority varieties, expanding the range of grape varieties, as well as the possible development of wines with unique profiles. In the Ribeira Sacra DO (Spain), a comparative study of the agronomic and qualitative behavior of the ‘Branco lexítimo’ variety has been carried out, compared to the majority white variety in the DO: ‘Godello’, located in the same study plot, with identic soil and climatic conditions. The study contemplated the analysis of phenology and leaf water potential, as well as the productive results and the analysis of the must quality, during four seasons: 2018 – 2021.

Valorization of grapevine leaves: screening of polyphenol composition in 50 cultivars

Grapevine leaves are known to contain different polyphenols such as flavonols, catechins and stilbenes, which are known to act as main contributors for plant defense against pathogens (1). While the composition for some major cultivars has been studied, there is lack of systematic comparison about the content of these compounds in the wide ecodiversity of Vitis vinifera cv. Recent advances in Mass Spectrometry-based Metabolomics allow a wider and more sensitive description of these polyphenols, as instance of those present in leaves (2). Such information could help to better explain leaf traits regarding the development of the leaf or to the plant tolerance to a pathogen. Moreover, these compounds offer appealing applications for human health due to their antioxidant activities.

Plastic debris at vines: carriers of pollutants in the environment?

Modern agriculture employs large amounts of plastics, such as mulching and greenhouse films, thermal covers, plant protection tubes and tying tape. The latter two types are very common in viticulture. Guard tubes are employed to protect young vines from mechanic and atmospheric damage, whilst polymeric tying tape has replaced natural-origin materials to hold the canopy of vines. Both materials are made on synthetic polymers, which include a range of additives to improve their environmental stability remaining in the environment of vineyards for years. During this time, they are exposed to the range of pesticides (fungicides, insecticides and in a lesser extend herbicides) applied to vines.

Defoliation combined with exogenous ABA application results in slower ripening and improved anthocyanin profile

Reducing sugar accumulation in grape (Vitis vinifera L.) berries may be a way to mitigate the effect of climate change. Managing canopy and crop load is an effective way to do so, however, reducing canopy size has been demonstrated to induce undesirable effects on anthocyanins. The aim of this study was to test if an application of exogenous ABA on the grape berries of defoliated vines (⅔ of the leaves removed) can result in slower sugar accumulation while maintaining grape and wine quality. An experiment with defoliation and exogenous ABA application on directly on clusters (factorial design 2×2) was performed with ‘Tempranillo’ fruit-bearing cuttings.