terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effect of rising atmospheric CO2 levels on grapevine yield and composition by the middle of the 21st century: what can we learn from the VineyardFACE?

Effect of rising atmospheric CO2 levels on grapevine yield and composition by the middle of the 21st century: what can we learn from the VineyardFACE?

Abstract

Atmospheric CO2 levels have been rising continuously since the industrial revolution, affecting crop physiology, yield and quality of harvest products, and grapevine is no exception [1]. Most of previously reported studies used potted plants in controlled environments, and explored grapevine response to relatively high CO2 levels, 700 ppm or more. The vineyardFACE, established in Geisenheim in 2012, uses a free air carbon dioxide enrichment (FACE) system to simulate a moderate (ambient +20%) increase in atmospheric CO2 in a vineyard planted with cvs. Cabernet-Sauvignon and Riesling grafted on rootstock 161-49 Couderc and SO4, respectively. Using this experimental setup, we report a 3 years survey of grape yield, and berry composition responses to a moderate increase in ambient CO2. An increase in net assimilation in leaves was observed for both cultivars, as well as a significant increase in fruit yield per vine. Berry size was not significantly affected, even though a general trend of larger berries was noted under elevated CO2. Berry ripening dynamics and composition at harvest were largely unaffected by the CO2 level increase, with the noticeable exception that anthocyanin levels tended to be lower under elevated CO2, compared to ambient. Profiling of central carbon metabolism intermediates and branching points to secondary metabolism pathways confirmed this result in both cultivars. Must terpene content analysis in Riesling showed little impact of elevated CO2, suggesting that its aromatic potential was probably unaffected. In conclusion, our results indicate that, although predicted mid-century CO2 levels do have an impact on grapevine yield, grape composition and oenological potential will probably be largely unaffected. However, it is noteworthy that non significant but consistent trends have been observed throughout the years, suggesting that the continuous rise in CO2 during the second half of the 21st century may finally overcome berry metabolic plasticity and acclimation to elevated CO2.

Acknowledgements: This work was supported by a PhD grant from the German-French University to C. Kahn (grant # DGSEIP/A1-3 N°2019-0203).

References:

1)  Clemens M.E. et al. (2022) Effects of elevated atmospheric carbon dioxide on the vineyard system of Vitis vinifera: a review. Am. J. Vitic. Enol. 73: 1-10, DOI 10.5344/ajev.2021.21029

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Eric Gomès*1, Cécile Kahn1, Susanne Tittmann2, Ghislaine Hilbert-Masson1, Regina Feil3, Christel Renaud1, John Lunn3, Manfred Stoll2

1EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33140 Villenave d’Ornon, France
2Department of General and Organic viticulture, Geisenheim University, Von-Lade Straße, Geisenheim, Germany
3Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Potsdam-Golm, D-14476 Potsdam-Golm, Germany

Contact the author*

Keywords

grapevine yield, berry composition, berry ripening, Free Air Carbon dioxide Enrichment

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Differences in metabolism among species and hybrids of the genus Saccharomyces during wine fermentation unveiled by multi-omic analysis 

Yeast species S. cerevisiae, S. uvarum, S. kudriavzevii and their hybrids present clear metabolic differences, even when we compared S. cerevisiae wine versus wild strain. These species and hybrids produced significantly higher amounts of glycerol, organic acids, 2,3-butanediol, and 2-phenyl ethanol and a reduction of the ethanol yield, properties very interesting in the sector to deal with climate change effects. To understand the existing differences, we have used several omics techniques to analyze the dynamics of the (intra- and extracellular) metabolomes and/or transcriptomes of representative strains of S. cerevisiae, S. uvarum, S. kudriavzevii, and hybrids.

Long-lasting flavour perception of wines treated with oenological additives considering the individual PROP taste-phenotype

The use of oenological additives is becoming a common practice due to the technological and sensory properties they provide to the wines. However, the number of studies focused on the impact that these additives might induce on wine flavor perception during wine tasting is still quite scarce. The aim of this work was to evaluate the effect of three different types of common oenological additives: two oenotannins (ellagitannin and gallotannin) and a commercial preparation of yeast mannoproteins on the long-lasting flavor perception (aroma and astringency).

Quantifying water use diversity across grapevine rootstock-scion combinations

Vines require proper light levels, temperature, and water availability, and climate change is modifying these factors, hampering yield and quality. Despite the large diversity of rootstocks, varieties, and clones, we still lack knowledge of their combined effects and potential role in a warmer and dryer future. Therefore, we aim to characterize some of the existing diversity of rootstocks and genotypes and their interaction at the eco-physiological level, combining stomatal conductance (gs) and chlorophyll a fluorescence analysis.

Combined use of leaf removal and natural shading to delay grape ripening in Manto negro (Vitis vinifera L.) under deficit irrigation 

The increasingly frequent heat waves during grape ripening pose challenges for premium wine grape production. This makes the development of irrigation and canopy management techniques of great importance to maximize yield and grape quality. A field experiment was carried out during 2021 and 2022 using Manto negro wine grapes to study the effect of two irrigation strategies and different light exposure levels on grape quality.

Cover crop management and termination timing have different effects on the maturation and water potentials of Glera (Vitis vinifera L.) in Friuli-Venezia Giulia

Inter-row soil tillage in vineyards, stimulates vigor and production due to the absence of competition for water and nutrients, however negatively affects organic matter content, soil erosion, and compaction, resulting in reduced fertility. In this study, we investigated the effects of different cover crop management approaches, including cultivation type and termination timing, on the physiological and productive responses of a Glera vineyard.
The experimental trial was conducted in Precenicco (UD) from 2019 to 2021. A commercial mixture for autumn cover cropping was sown in alternating rows, and the sowing pattern was changed each year.