terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 The tolerance of grapevine rootstocks to water deficit is related to root morphology and xylem anatomy traits 

The tolerance of grapevine rootstocks to water deficit is related to root morphology and xylem anatomy traits 

Abstract

Climate change is altering water balances, thereby compromising water availability for crops. In grapevine, the strategic selection of genotypes more tolerant to soil water deficit can improve the resilience of the vineyard under this scenario. Previous studies demonstrated that root anatomical and morphological traits determine vine performance under water deficit conditions. Therefore, 13 ungrafted rootstock genotypes, 6 commercial (420 A, 41 B, Evex 13-5, Fercal, 140 Ru y 110 R), and 7 from new breeding programs (RG2, RG3, RG4, RG7, RG8, RG9 and RM2) were evaluated in pots during 2021 and 2022. Well-watered plants were subjected to progressive water deficit and subsequent recovery.  Plant water status and hydraulic conductance was determined under different conditions of water availability and, at the end of the experiment, the anatomy of the vascular system and root morphology were characterized by using optical microscopy and WinRHIZO software respectively. The results showed a great anatomical diversity of xylem among the genotypes studied. The greater proportion of fine roots and the smaller diameter of the xylem vessels seem to be key traits in the tolerance to severe stress and the recovery capacity. The genotypes 420 A and RM2 (common parent V. Berlandieri), showed greater tolerance to severe stress and recovery capacity. On the other hand, the new RG series did not show clear advantages of adaptation to stress compared to commercial rootstocks. These findings improve the understanding of the role of root anatomy and morphology in vine responses to water deficit providing a basis for future breeding programs.

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Flor L.1*, Buesa I.1,2, Sabater A.1, Gómez I.1, Medrano H.1,2, Escalona JM 1,2

1Agro-environmental and Water Economy Research Institute-University of Balearic Islands (INAGEA-UIB)
2Research group of plant biology under Mediterranean Conditions – University of Balearic Islands (PlantMed-UIB)

Contact the author*

Keywords

hydraulic conductance, plant water status, drought, climate change, xylem vessels, root diameter

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Effects of laccase from Botrytis cinerea on the oxidative degradation kinetics of the five natural grape anthocyanins

Enzymatic browning[1] is an oxidation process that occurs in many foods that increases the brown colour[2]. This problem is especially harmful in the wine industry[3]. especially when the grapes are infected by grey rot since this fung release the oxidative enzyme laccase[4]. In the particular case of red wines, the presence of laccase implies the deterioration of the red colour and can even cause the precipitation of the coloring matter (oxidasic haze)[5].

New food trend ahead? Highlighting the nutritional benefits of grapevine leaves

The wine industry produces an enormous amount of waste every year. A wider inclusion of disregarded by-products in the human diet or its use as a source of bioactive compounds is a good strategy for reducing waste. It will not only introduce an added value to a waste product but also come upon the European Union and United Nations’ demands towards more sustainable agricultural approaches and circular economy.

The colour pattern of flower arrangements influence wine tasters’ sensory description

The arrangements of flowers and wine counterparts are inextricably linked. Whether a fundamental aspect of tablescaping or acolytes to broader entertainment rituals, they have an entangled history since ancient times. The aim of this contribution is to verify the influence of visually delicate and robust flower arrangements on individual description of wines. Changes in the sensory description of wines were investigated during subjects’ (thirty-two participants) exposure to three different conditions: the presence of delicate, robust, or totally absent flower arrangements.

Differential gene expression and novel gene models in 110 Richter uncovered through RNA Sequencing of roots under stress

The appearance of the Phylloxera pest in the 19th century in Europe caused dramatical damages in grapevine diversity. To mitigate these losses, grapevine growers resorted to using crosses of different Vitis species, such as 110 Richter (110R) (V. berlandieri x V. rupestris), which has been invaluable for studying adaptations to stress responses in vineyards. Recently, a high quality chromosome scale assembly of 110R was released, but the available gene models were predicted without using as evidence transcriptional sequences obtained from roots, that are crucial organs in rootstock, and they may express certain genes exclusively. Therefore, we employed RNA sequencing reads of 110R roots under different stress conditions to predict new gene models in each haplotype of 110R under different stresses.

Grape pomace, an active ingredient at the intestinal level: Updated evidence

Grape pomace (GP) is a winemaking by-product particularly rich in (poly)phenols and dietary fiber, which are the main active compounds responsible for its health-promoting effects. GP-derived products have been proposed to manage cardiovascular risk factors, including endothelial dysfunction, inflammation, hypertension, hyperglycemia, and obesity. Studies on the potential impact of GP on gut health are much more recent. However, it is suggested that, to some extent, this activity of GP as a cardiometabolic health-promoting ingredient would begin in the gastrointestinal tract as GP components (i.e., (poly)phenols and fiber) undergo extensive catabolism, mainly by the action of the intestinal microbiota, that gives rise to low-molecular-weight bioactive compounds that can be absorbed and utilized by the body.