terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 The tolerance of grapevine rootstocks to water deficit is related to root morphology and xylem anatomy traits 

The tolerance of grapevine rootstocks to water deficit is related to root morphology and xylem anatomy traits 

Abstract

Climate change is altering water balances, thereby compromising water availability for crops. In grapevine, the strategic selection of genotypes more tolerant to soil water deficit can improve the resilience of the vineyard under this scenario. Previous studies demonstrated that root anatomical and morphological traits determine vine performance under water deficit conditions. Therefore, 13 ungrafted rootstock genotypes, 6 commercial (420 A, 41 B, Evex 13-5, Fercal, 140 Ru y 110 R), and 7 from new breeding programs (RG2, RG3, RG4, RG7, RG8, RG9 and RM2) were evaluated in pots during 2021 and 2022. Well-watered plants were subjected to progressive water deficit and subsequent recovery.  Plant water status and hydraulic conductance was determined under different conditions of water availability and, at the end of the experiment, the anatomy of the vascular system and root morphology were characterized by using optical microscopy and WinRHIZO software respectively. The results showed a great anatomical diversity of xylem among the genotypes studied. The greater proportion of fine roots and the smaller diameter of the xylem vessels seem to be key traits in the tolerance to severe stress and the recovery capacity. The genotypes 420 A and RM2 (common parent V. Berlandieri), showed greater tolerance to severe stress and recovery capacity. On the other hand, the new RG series did not show clear advantages of adaptation to stress compared to commercial rootstocks. These findings improve the understanding of the role of root anatomy and morphology in vine responses to water deficit providing a basis for future breeding programs.

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Flor L.1*, Buesa I.1,2, Sabater A.1, Gómez I.1, Medrano H.1,2, Escalona JM 1,2

1Agro-environmental and Water Economy Research Institute-University of Balearic Islands (INAGEA-UIB)
2Research group of plant biology under Mediterranean Conditions – University of Balearic Islands (PlantMed-UIB)

Contact the author*

Keywords

hydraulic conductance, plant water status, drought, climate change, xylem vessels, root diameter

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

The colour pattern of flower arrangements influence wine tasters’ sensory description

The arrangements of flowers and wine counterparts are inextricably linked. Whether a fundamental aspect of tablescaping or acolytes to broader entertainment rituals, they have an entangled history since ancient times. The aim of this contribution is to verify the influence of visually delicate and robust flower arrangements on individual description of wines. Changes in the sensory description of wines were investigated during subjects’ (thirty-two participants) exposure to three different conditions: the presence of delicate, robust, or totally absent flower arrangements.

Yeast mannoprotein characterization and their effect on Oenococcus oeni and malolactic fermentation

Mannoproteins are released at the end of alcoholic fermentation due to yeast autolysis [1]. It has been described a positive effect of these molecules on lactic acid bacteria growth [2]. The main objective of this work was the characterization of different mannoproteins extracted from active dry yeast (ADY) and the assessment of their effect on Oenococcus oeni and malolactic fermentation (MLF).

Phenolic composition and chromatic characteristics of blends of cv. Tempranillo wines from vines grown with different viticultural techniques in a semi-arid area

The quality and color stability of red wines are directly related to content and distribution of phenolic compounds. However, the climate change produces the asynchrony between the dates of technological and maturity of grapes. The crop-forcing technique (CF) restores the coupling between phenolic and technological ripeness while limits vineyard yields. Blending of wines is frequently used to equilibriate composition of wines and to increase their stability, color and quality. The aim of the present work is to study the phenolic composition and color of wine blends made with FW (wines from vines subjected to CF) and CW (wines for vines under the usual cultivation practices).

Late pruning, an alternative for rainfed vine varieties facing new climatic conditions

In Chile there is a dry farming area known as a traditional wine region, where varieties brought by the Spanish conquerors still persist. These varieties, in general, are cultivated under traditional systems, with low use of technical and economic resources, and low profitability for their grapes and wines. In this region, as in other wine grape growing areas, climatic conditions have changed significantly in recent decades. In particular, the occurrence of spring frosts, when bud break has already begun, have generated significant losses for these growers.

“Compost Application in the Vineyard: Effects on Soil Nutrition and Compaction”

The mechanization of pruning and harvesting in vineyards has increased the risk of soil compaction. To reclaim soil properties or avoid this degradation process, it is crucial to properly manage the soil organic matter, and the application of compost derived from the vines themselves is a strategy to achieve this. The objective of this study was to evaluate the properties of soil treated with different doses of compost applied both on the vine row and the inter rows of a Vitis vinifera crop.