terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 The tolerance of grapevine rootstocks to water deficit is related to root morphology and xylem anatomy traits 

The tolerance of grapevine rootstocks to water deficit is related to root morphology and xylem anatomy traits 

Abstract

Climate change is altering water balances, thereby compromising water availability for crops. In grapevine, the strategic selection of genotypes more tolerant to soil water deficit can improve the resilience of the vineyard under this scenario. Previous studies demonstrated that root anatomical and morphological traits determine vine performance under water deficit conditions. Therefore, 13 ungrafted rootstock genotypes, 6 commercial (420 A, 41 B, Evex 13-5, Fercal, 140 Ru y 110 R), and 7 from new breeding programs (RG2, RG3, RG4, RG7, RG8, RG9 and RM2) were evaluated in pots during 2021 and 2022. Well-watered plants were subjected to progressive water deficit and subsequent recovery.  Plant water status and hydraulic conductance was determined under different conditions of water availability and, at the end of the experiment, the anatomy of the vascular system and root morphology were characterized by using optical microscopy and WinRHIZO software respectively. The results showed a great anatomical diversity of xylem among the genotypes studied. The greater proportion of fine roots and the smaller diameter of the xylem vessels seem to be key traits in the tolerance to severe stress and the recovery capacity. The genotypes 420 A and RM2 (common parent V. Berlandieri), showed greater tolerance to severe stress and recovery capacity. On the other hand, the new RG series did not show clear advantages of adaptation to stress compared to commercial rootstocks. These findings improve the understanding of the role of root anatomy and morphology in vine responses to water deficit providing a basis for future breeding programs.

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Flor L.1*, Buesa I.1,2, Sabater A.1, Gómez I.1, Medrano H.1,2, Escalona JM 1,2

1Agro-environmental and Water Economy Research Institute-University of Balearic Islands (INAGEA-UIB)
2Research group of plant biology under Mediterranean Conditions – University of Balearic Islands (PlantMed-UIB)

Contact the author*

Keywords

hydraulic conductance, plant water status, drought, climate change, xylem vessels, root diameter

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

The influence of pre-heatwave leaf removal on leaf physiology and berry development

Due to climate change, the occurrence of heatwaves and drought events is increasing, with significant impact on viticulture. Common ways to adapt viticulture to a changing climate include site selection, genotype selection, irrigation management and canopy management. The latter mentioned being for instance source-sink manipulations, such as leaf removal, with the aim to delay ripening.

Barrels ad-hoc: Spanish oak wood classification by NIRs 

The wooden barrel is a key factor in enology, since wine chemical composition and sensory properties changes significantly in contact with the barrel[1]. Today’s highly competitive market constantly demands new differentiated products and wineries search innovations continuously.
Wood selection is crucial: barrels stability to keep constant their contribution and the result on products, and additional and differentiated wood contributions to impact their new products. Oak wood selection has traditionally been carried out using parameters such as specie, location and grain, however, it goes one step further nowadays. Large cooperage work with non-destructive techniques that allow classifying oak wood quickly and easily according to their organoleptic contribution[2].

Effect of two water deficit regimes on the agronomic response of 12 grapevine varieties cultivated in a semi-arid climate

The Mediterranean basin is one of the most vulnerable regions to Climate Change effects. According to unanimous forecasts, the vineyards of Castilla-La Mancha will be among the most adversely affected by rising temperatures and water scarcity during the vine’s vegetative period. One potential strategy to mitigate the negative impacts of these changes involves the identification of grapevine varieties with superior water use efficiency, while ensuring satisfactory yields and grape quality.

Physico-chemical properties of vine pruning residues with potential as enological additive

Grapes are one of the world’s primary fruit crops, and pruning activities generate high amounts of annual wood wastes [1]. These pruning shoots contain valuable phenolic compounds and could have numerous potential applications [1,2]. Consequently, the aim of this work was to evaluate the physico-chemical properties of vine pruning residues with potential as enological additives. For this purpose, grapevine shoots from 12 varieties grown in Chile were collected during the winter of 2021.

Anthocyanin content and composition of Merlot grapes under temperature and late pruning conditions 

One of the main aspects of Climate Change is the increase of temperatures during summer and grape maturity period. Physiological processes are influenced by these high temperatures and result in grapes with higher sugar concentration, less acidity and less anthocyanin content among other quality changes. One strategy to deal with the climate change effects is the implementation of late winter pruning to alter the effect of high temperatures during key periods by delays in maturity time.