terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Metabolomic profiling of heat-stressed grape berries 

Metabolomic profiling of heat-stressed grape berries 

Abstract

The projected rise in mean air temperatures together with the frequency, intensity, and length of heat waves in many wine-growing regions worldwide will deeply impact grape berry development and quality. Several studies have been conducted and a large set of molecular data was produced to better understand the impact of high temperatures on grape berry development and metabolism[1]. According to these data, it is highly likely that the metabolomic dynamics could be strongly modulated by heat stress (HS). Hence, the objective of the present study is to investigate the metabolome profiling on grape berries, exposed or not, to high temperature. We applied HS directly on clusters from V. vinifera L. Cabernet Sauvignon (heat sensitive genotype) and V. vinifera L.  Merlot (heat tolerant genotype) at different developmental stages. HS was applied continuously from 8:00 am to 16:00 pm for up to 10 days in greenhouse. The temperature difference between the HS-treated and control bunches was 9 °C. Berry samples were collected after both short-term and long-term HS treatment and metabolomic analyses were conducted using the untargeted LC-MS approach. Data processing was performed by MS-DIAL 4.94 and MetaboAnalyst 5.0.

Our first set of results highlights metabolites and distinct biochemical pathways impacted by HS, according to the thermotolerance ability of the evaluated cultivars. Our data also underline the temporal dynamics of metabolic responses triggered by HS, highlighting the importance of characterizing these metabolic changes at different time scales.

Acknowledgements: This work is supported by the ANR (PARASOL Project, ANR-20-CE21-0003) and X. Z. PhD thesis is founded by China Scholarship Council. The authors would like to EGFV Materiel-Vegetal team and Dr. Erwan Chavonet for the fruit cutting production.

References:

  1. Lecourieux F. et al. (2017) Dissecting the biochemical and transcriptomic effects of a locally applied heat treatment on developing cabernet sauvignon grape berries. Front Plant Sci 8: 53

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Xi ZHAN1*, Adam ROCHEPEAU2, Cédric CASSAN2, Fatma OUAKED-LECOURIEUX1, Pierre PETRIACQ2, David LECOURIEUX1

1EGFV, University of Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France 
2Bordeaux Metabolome, INRAE Bordeaux Nouvelle Aquitaine, INRAE, Villenave d’Ornon, France

Contact the author*

Keywords

grapevine, berry quality, metabolomics, high temperature, climate change

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Long-lasting flavour perception of wines treated with oenological additives considering the individual PROP taste-phenotype

The use of oenological additives is becoming a common practice due to the technological and sensory properties they provide to the wines. However, the number of studies focused on the impact that these additives might induce on wine flavor perception during wine tasting is still quite scarce. The aim of this work was to evaluate the effect of three different types of common oenological additives: two oenotannins (ellagitannin and gallotannin) and a commercial preparation of yeast mannoproteins on the long-lasting flavor perception (aroma and astringency).

Induction of polyphenols in seedlings of Vitis vinifera cv. Monastrell by the application of elicitors

Contamination problems arising from the use of pesticides in viticulture have raised concerns. One of the alternatives to reduce contamination is the use of elicitors, molecules capable of stimulating the natural defences of plants, promoting the production of phenolic compounds (PC) that offer protection against biotic and abiotic stress. Previous studies on Cabernet-Sauvignon seedlings demonstrated that foliar application of elicitors methyl jasmonate (MeJ) and benzothiadiazole (BTH) increased proteins and PC involved in grapevine defence mechanisms. However, no trials had been conducted on Monastrell seedlings, a major winegrape variety in Spain.

The interplay between water deficit and nitrogen and potassium nutrition in Vitis vinifera L.

Climate change is expected to provoke an increase in the frequency and intensity of drought events and water scarcity that will have detrimental effects on photosynthesis and plant yield. To sustain an appropriate plant yield under sub-optimal conditions, a common practice is the application of high amounts of fertilizers with negative environmental consequences. The present study aims at evaluating the interplay between water and nutrient availability, namely nitrogen (N) and potassium (K), in two grapevine cultivars with a different sensitivity to water shortage stress. Two-year-old Vitis Vinifera cv. Cabernet Sauvignon and Grenache grapevine plants grafted on SO4 rootstock have been transferred in pots under semi-environmental conditions.

Development of a new method for detecting acetic acid bacteria in wine

The presence of acetic acid bacteria in wine can lead to the appearance of acetic acid at concentrations above the perception threshold, causing the wine rejection by the consumer. During the winemaking process, avoiding the presence of acetic acid bacteria is very difficult, as there is always a residual population accompanying the wine[1], and the problem arises with the significant development of these microorganisms that metabolizes large amounts of acetic acid.
The concern of wineries to control the presence of acetic acid bacteria in wines during their conservation is due to the absence of simple and effective analyses that allow the detection of these microorganisms in the initial stages.

Viticultural heritage in mountain territories of Catalonia: prospecting in the region of Osona, northern Spain

The recovery of ancestral or minority vine varieties has been gaining great interest in recent years, among other reasons because it is likely that some of these varieties, due to the fact that they are found in relict areas, have a greater potential for adaptation to external factors (biotic or abiotic) and can minimize the effects that climate change is causing in viticulture. Varieties that can be grown at altitude are currently being sought to combat rising temperatures and prolonged extreme drought conditions. In Catalonia, the Pyrenean expansion of vineyard cultivation is documented from the 10th century and has been related to the “small climatic optimum” (9th-12th centuries) and also to seigniorial power.[1] But different adverse climatic periods and the arrival of Phylloxera by the late 19th century made many of these crops disappear.[2]