terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Metabolomic profiling of heat-stressed grape berries 

Metabolomic profiling of heat-stressed grape berries 

Abstract

The projected rise in mean air temperatures together with the frequency, intensity, and length of heat waves in many wine-growing regions worldwide will deeply impact grape berry development and quality. Several studies have been conducted and a large set of molecular data was produced to better understand the impact of high temperatures on grape berry development and metabolism[1]. According to these data, it is highly likely that the metabolomic dynamics could be strongly modulated by heat stress (HS). Hence, the objective of the present study is to investigate the metabolome profiling on grape berries, exposed or not, to high temperature. We applied HS directly on clusters from V. vinifera L. Cabernet Sauvignon (heat sensitive genotype) and V. vinifera L.  Merlot (heat tolerant genotype) at different developmental stages. HS was applied continuously from 8:00 am to 16:00 pm for up to 10 days in greenhouse. The temperature difference between the HS-treated and control bunches was 9 °C. Berry samples were collected after both short-term and long-term HS treatment and metabolomic analyses were conducted using the untargeted LC-MS approach. Data processing was performed by MS-DIAL 4.94 and MetaboAnalyst 5.0.

Our first set of results highlights metabolites and distinct biochemical pathways impacted by HS, according to the thermotolerance ability of the evaluated cultivars. Our data also underline the temporal dynamics of metabolic responses triggered by HS, highlighting the importance of characterizing these metabolic changes at different time scales.

Acknowledgements: This work is supported by the ANR (PARASOL Project, ANR-20-CE21-0003) and X. Z. PhD thesis is founded by China Scholarship Council. The authors would like to EGFV Materiel-Vegetal team and Dr. Erwan Chavonet for the fruit cutting production.

References:

  1. Lecourieux F. et al. (2017) Dissecting the biochemical and transcriptomic effects of a locally applied heat treatment on developing cabernet sauvignon grape berries. Front Plant Sci 8: 53

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Xi ZHAN1*, Adam ROCHEPEAU2, Cédric CASSAN2, Fatma OUAKED-LECOURIEUX1, Pierre PETRIACQ2, David LECOURIEUX1

1EGFV, University of Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France 
2Bordeaux Metabolome, INRAE Bordeaux Nouvelle Aquitaine, INRAE, Villenave d’Ornon, France

Contact the author*

Keywords

grapevine, berry quality, metabolomics, high temperature, climate change

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Phenolic composition profile of cv. Tempranillo wines obtained from severe shoot pruning vines under semiarid conditions

One of the limitations of vineyards in warm areas is the loss of wine quality due to higher temperatures during the grape ripening period. In order to adapt the vineyards to these new climatic conditions, a possible solution is to delay the ripening process of the grapes towards periods with milder temperatures, by means of management practices and thus improve the quality of the fruit and the wine produced. The technique of severe shoot pruning (SSP) has proven useful in achieving this objective.

REGAVID a decision tool to deficit irrigation in a temperate climate (DO Monterrei – Spain)

In temperate climates, such as in the North of Spain, the use of irrigation in the vineyard has not been required, due to the usual rainfall from June to August. In some large vineyards, irrigation management has been carried out, based on occasional support irrigation, or for the application of nutrients (fertigation). Currently it is necessary to implement decision support models to manage irrigation water in real time and avoid misuse of a scarce resource. Moreover, quality standards must be achieved, as in the previous rainfed viticulture.

Indicators of Sustainable Vineyard Soil Management: Metrics for Assessing Environmental Impacts

The vital role of soils in supporting life on our planet cannot be overstated. Soils provide numerous ecosystem services and functions, including biomass production, carbon sequestration, physical support, biological habitat, and genetic reserve, among others. Understanding the characteristics and sensitivity of soils in a specific terroir, along with effective soil management practices, is crucial for the sustainable management of natural resources.

Application of antagonistic Metschnikowia strains against Botrytis cinerea in vineyards 

Less and less chemical plant protection products are approved by the E U. Plant pathogenic fungi become increasingly resistant to the active ingredients that have been around for a long time. Besides, there is a valid demand for effective products that can be applied in organic cultivation.
We examined Metschnikowia strains under laboratory conditions in order to find effective strains against B. cinerea. The antimicrobial mechanism of these yeasts is based on the competition for the ferric ions from the environment. Metschnikowia cells release the pulcherriminic acid which chelates with Fe3+, forming the pigment pulcherrimin.

Mycorrhizal symbiosis modulates flavonoid and amino acid profiles in grapes of Tempranillo and Cabernet Sauvignon 

Arbuscular mycorrhizal fungi (AMF) symbiosis is probably the most widespread beneficial interaction between plants and microorganisms. AMF has been widely reported to promote grapevine growth, water and nutrient uptake as well as both biotic and abiotic stress tolerance[1]. However, the impact of AMF on grape composition has been less studied. The aim of this work was to evaluate the effects of the association between two commercial grapevine cultivars (Tempranillo and Cabernet Sauvignon grafted onto 110 rootstock) and AMF on the anthocyanin, flavonol and amino acid concentrations and profiles of grapes.