terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Metabolomic profiling of heat-stressed grape berries 

Metabolomic profiling of heat-stressed grape berries 

Abstract

The projected rise in mean air temperatures together with the frequency, intensity, and length of heat waves in many wine-growing regions worldwide will deeply impact grape berry development and quality. Several studies have been conducted and a large set of molecular data was produced to better understand the impact of high temperatures on grape berry development and metabolism[1]. According to these data, it is highly likely that the metabolomic dynamics could be strongly modulated by heat stress (HS). Hence, the objective of the present study is to investigate the metabolome profiling on grape berries, exposed or not, to high temperature. We applied HS directly on clusters from V. vinifera L. Cabernet Sauvignon (heat sensitive genotype) and V. vinifera L.  Merlot (heat tolerant genotype) at different developmental stages. HS was applied continuously from 8:00 am to 16:00 pm for up to 10 days in greenhouse. The temperature difference between the HS-treated and control bunches was 9 °C. Berry samples were collected after both short-term and long-term HS treatment and metabolomic analyses were conducted using the untargeted LC-MS approach. Data processing was performed by MS-DIAL 4.94 and MetaboAnalyst 5.0.

Our first set of results highlights metabolites and distinct biochemical pathways impacted by HS, according to the thermotolerance ability of the evaluated cultivars. Our data also underline the temporal dynamics of metabolic responses triggered by HS, highlighting the importance of characterizing these metabolic changes at different time scales.

Acknowledgements: This work is supported by the ANR (PARASOL Project, ANR-20-CE21-0003) and X. Z. PhD thesis is founded by China Scholarship Council. The authors would like to EGFV Materiel-Vegetal team and Dr. Erwan Chavonet for the fruit cutting production.

References:

  1. Lecourieux F. et al. (2017) Dissecting the biochemical and transcriptomic effects of a locally applied heat treatment on developing cabernet sauvignon grape berries. Front Plant Sci 8: 53

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Xi ZHAN1*, Adam ROCHEPEAU2, Cédric CASSAN2, Fatma OUAKED-LECOURIEUX1, Pierre PETRIACQ2, David LECOURIEUX1

1EGFV, University of Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France 
2Bordeaux Metabolome, INRAE Bordeaux Nouvelle Aquitaine, INRAE, Villenave d’Ornon, France

Contact the author*

Keywords

grapevine, berry quality, metabolomics, high temperature, climate change

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Wine racking in the winery and the use of inerting gases

The O2 uptake in the different winemaking processes is generally considered to be negative for the sensory characteristics of white and rosé wines. Wine racking is a critical point of O2 uptake, as the large surface area of the wine exposed during this operation and the inability to maintain an effective inert gas blanket over it.
The objective was to study O2 uptake during the racking of a model wine without using inert gases and to compare it with the purging of the destination tank with different inert gases.

Biotype diversity within the autochthonous ‘Bobal’ grapevine variety

Bobal is the second most widely grown Spanish red grape variety (54,165 has), mainly cultivated in the Valencian Community and especially, in Utiel-Requena region (about 67% of 34,000 has). In this study, agronomic and enological parameters were determined in 98 biotypes selected during 2018 and 2019 in more than 50 vineyards over 50 years-old in the Utiel-Requena region. Moreover, a multi-criteria approach considering temperature and rainfall (Fig. 1A), among other parameters, was made to establish three different zones within the region (Fig. 1B), where in the future the selected biotypes will evaluated. In fact, in 2020, 4 replicates and 12 vines per biotype were planted in an experimental vineyard to preserve this important intra-cultivar diversity.

Effect of foliar application of urea and nano-urea on the cell wall of Monastrell grape skins

The foliar application of urea has been shown to be able to satisfy the specific nutritional needs of the vine as well as to increase the nitrogen composition of the must. On the other hand, the use of nanotechnology could be of great interest in viticulture as it would help to slow down the release of urea and protect it against possible degradation. Several studies indicate that cell wall synthesis and remodeling are affected by nitrogen availability.

Characterization of spoilage yeasts from Malbec grapes from San Rafael wine region (Argentina)

The yeast ecosystem in grape musts is quite broad and depends on the region and the health of the grapes. Within this, there are yeasts that can generate fermentative deviations and/or cause defects in the wine. It is very important to address this issue because there are significant economic losses in the wine industry when the fermentation process and/or the organoleptic characteristics of the wine are negatively affected, even more today since climate change has a marked effect on the composition of this ecosystem. The aim of this work is to characterize the behavior regarding detrimental oenological features of potential spoilage yeasts isolated from viticultural environments.

Stomatal abundance in grapevine: developmental genes, genotypic variation, and physiology

Grapevine cultivation is threatened by the global warming, which combines high temperatures and reduced rainfall, impacting in wine quality and even plant survival. Breeding for varieties resilient to these challenges must address plant traits such as tolerance to supraoptimal temperatures and optimized water use efficiency while minimizing productivity and quality losses. Stomatal abundance (SA) determines the maximum leaf potential for transpiration and thus water loss and cooling. Since SA results from a developmental process during leaf emergence and growth, knowledge on the genetic control of this process would provide specific targets for modification.