terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effects of progeny in the modulation of the response to water stress in isohydric and anisohydric varieties

Effects of progeny in the modulation of the response to water stress in isohydric and anisohydric varieties

Abstract

Each grapevine variety has a specific water use regulation response under drought, and it is still unclear whether this regulation results from innate genotypic behavior (iso- and anisohydric), or is a response to environmental factors, namely recurrent water stress priming effects. In the present work, we explored the influence of the field-grown genotypes’ drought memory in the drought-response phenotype of their vegetative progenies, in Trincadeira (isohydric) and Castelão (anisohydric) varieties under a drought event followed by recovery in a glasshouse. Cuttings from both cultivars subjected to full irrigation (FI) and non-irrigation (NI) treatments for 5 consecutive years were used. Progenies were subjected to two irrigation treatments, well-watered (WW), where the soil was kept at field capacity, and water-stress (WS), where irrigation was withheld for 7 days. WS plants were then re-watered and kept at field capacity for 72h. Measurements and sampling were done in both progenies of both treatments, at 0h, 72h and 168h after the beginning of the treatment and after 24h and 72h of recovery. NI progenies from both cultivars had improved gas exchange parameters, better total plant hydraulic conductance under drought, and faster recovery than FI progenies. Nocturnal and diurnal transpiration were affected both by progeny and treatment. Leaf wax content was significantly enhanced by WS in both progenies, but it was higher in NI progenies. Stomatal conductance kinetic showed differences in the timing of stomatal aperture between progenies, in particular after water recovery. Leaf temperature (Tc) was similar in both varieties and progenies, but higher temperatures were measured under WS. Leaf temperature only recovered 72h after re-watering. Although isohydric and anisohydric genotypes exhibited different drought acclimation responses due to their inner genetic behavior, their underlying hydraulic, stomatal and photosynthetic regulatory mechanisms were also affected by historical origin. In this presentation, fundamental insights about potential priming mechanisms in grapevine will be further discussed.

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Olfa Zarrouk1,2†, João de Deus3*, Miguel Damasio3*, Ana Rodrigues4, José Silvestre3, Luisa Carvalho1†

1LEAF – Linking Landscape, Environment, Agriculture and Food Research Centre, Associate Laboratory TERRA, ISA-ULisboa, Lisboa, Portugal
2SFCoLAB – Laboratório Colaborativo para a Inovação Digital na Agricultura, Torres Vedras, Portugal
3INIAV – Instituto Nacional de Investigação Agrária e Veterinária, I.P., Oeiras, Portugal
4CEF – Centro de Estudos Florestais, Associate Laboratory TERRA, ISA-ULisboa, Lisboa, Portugal

Contact the author*

Keywords

thermal imaging, hydraulic conductance, stomatal conductance, transpiration

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Applicability of grape native yeasts to enhance regional wine typicity

The universalization in wine production has been restricting the imprint of terroir in regional wines, resulting in loss of typicity. Microbes are the main driving force in wine production, conducting fermentation and originating a myriad of metabolites that underly wine aroma. Grape berries harbor an ecological niche composed of filamentous fungi, yeasts and bacteria, which are influenced by the ripening stage, cultivar and region. The research project GrapeMicrobiota gathers a consortium from University of Zaragoza, University of Minho and University of Tours and aims at the isolation of native yeast strains from berries of the wine region Douro, UNESCO World Heritage, towards the production of wines that stand out in the market for their authenticity and for reflecting their region of origin in their aroma.

Predicting provenance and grapevine cultivar implementing machine learning on vineyard soil microbiome data: implications in grapevine breeding

The plant rhizosphere microbial communities are an essential component of plant microbiota, which is crucial for sustaining the production of healthy crops. The main drivers of the composition of such communities are the growing environment and the planted genotype. Recent viticulture studies focus on understanding the effects of these factors on soil microbial composition since microbial biodiversity is an important determinant of plant phenotype, and of wine’s organoleptic properties. Microbial biodiversity of different wine regions, for instance, is an important determinant of wine terroir.

Typicality of Rioja wines: identification of sensory profiles for the three subregions of DOCa Rioja

Within the DOCa Rioja three main production areas are differentiated: Rioja Alta (RA), Rioja Alavesa (RAv) and Rioja Oriental (RO). They are three diverse territories with particular characteristics that are claimed to give rise to differentiated profiles. The present work aims at evaluating the sensory diversity of young commercial red wines in these three subregions. Therefore 30 young red wines (mainly Tempranillo and vintage 2021), ten from each subregion, were sensory described following a non-verbal free sorting task and a verbal free comment task by 32 well-established Rioja winemakers.

Agronomic and oenological behavior of the minority Mandón variety on two rootstocks in the D.O. Arribes

A large population of vines of the Mandón minority red variety (synonymous with Garró) has been located in old vineyards of the D.O. Arribes (Zamora and Salamanca) to conserve and recover this minority variety. The wines made with this variety are characterized by their good structure and color, interesting harmony, an excellently low pH, with high acidity, as well as complex aromas of blue fruits and a marked and expressive minerality.

Optimization of the ripening time of new varieties descendants of Monastrell

Given the impact of climate change on viticulture in the Region of Murcia, this paper attempts to expose the possibility of using genetic improvement as a dilemma that allows access to new descendant varieties of the autochthonous variety Monastrell crossed with varieties such as Syrah and Cabernet. Sauvignon, thus obtaining hybrids (Gebas and Myrtia). In it, the chromatic parameters and the phenolic profile of the new varieties will be compared with those obtained by the Monastrell variety at two moments during maturation (12 and 14 º Baumé), to check if the results would allow earlier harvests in these new varieties thus avoiding the decoupling between phenolic and technological maturity, while improving the quality of grapes and wines.