terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effects of progeny in the modulation of the response to water stress in isohydric and anisohydric varieties

Effects of progeny in the modulation of the response to water stress in isohydric and anisohydric varieties

Abstract

Each grapevine variety has a specific water use regulation response under drought, and it is still unclear whether this regulation results from innate genotypic behavior (iso- and anisohydric), or is a response to environmental factors, namely recurrent water stress priming effects. In the present work, we explored the influence of the field-grown genotypes’ drought memory in the drought-response phenotype of their vegetative progenies, in Trincadeira (isohydric) and Castelão (anisohydric) varieties under a drought event followed by recovery in a glasshouse. Cuttings from both cultivars subjected to full irrigation (FI) and non-irrigation (NI) treatments for 5 consecutive years were used. Progenies were subjected to two irrigation treatments, well-watered (WW), where the soil was kept at field capacity, and water-stress (WS), where irrigation was withheld for 7 days. WS plants were then re-watered and kept at field capacity for 72h. Measurements and sampling were done in both progenies of both treatments, at 0h, 72h and 168h after the beginning of the treatment and after 24h and 72h of recovery. NI progenies from both cultivars had improved gas exchange parameters, better total plant hydraulic conductance under drought, and faster recovery than FI progenies. Nocturnal and diurnal transpiration were affected both by progeny and treatment. Leaf wax content was significantly enhanced by WS in both progenies, but it was higher in NI progenies. Stomatal conductance kinetic showed differences in the timing of stomatal aperture between progenies, in particular after water recovery. Leaf temperature (Tc) was similar in both varieties and progenies, but higher temperatures were measured under WS. Leaf temperature only recovered 72h after re-watering. Although isohydric and anisohydric genotypes exhibited different drought acclimation responses due to their inner genetic behavior, their underlying hydraulic, stomatal and photosynthetic regulatory mechanisms were also affected by historical origin. In this presentation, fundamental insights about potential priming mechanisms in grapevine will be further discussed.

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Olfa Zarrouk1,2†, João de Deus3*, Miguel Damasio3*, Ana Rodrigues4, José Silvestre3, Luisa Carvalho1†

1LEAF – Linking Landscape, Environment, Agriculture and Food Research Centre, Associate Laboratory TERRA, ISA-ULisboa, Lisboa, Portugal
2SFCoLAB – Laboratório Colaborativo para a Inovação Digital na Agricultura, Torres Vedras, Portugal
3INIAV – Instituto Nacional de Investigação Agrária e Veterinária, I.P., Oeiras, Portugal
4CEF – Centro de Estudos Florestais, Associate Laboratory TERRA, ISA-ULisboa, Lisboa, Portugal

Contact the author*

Keywords

thermal imaging, hydraulic conductance, stomatal conductance, transpiration

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Evaluation of Furmint clones in the Tokaj Wine Region

The ’Furmint’ is the most important grape variety in the Tokaj Wine Region, constituting around 65% of its vineyard area. Before the phylloxera disease many types were grown, but as selection started in the 20th century, its diversity dramatically narrowed. As a result, the cultivation of Furmint was based mainly on two heavy-cropping clones, T.85 and T.92 at the end of the ’80s. Aims of present clone research take into account that after solely quantity as target, quality emerged in the 1990’s and most recently, typicity appeared as more private estates began their own selection program.

The characterization of Vitis vinifera L cv. Cabernet sauvignon: the contribution of Ecklonia maxima seaweed extract

Biostimulants and biofertilizers are considered environmentally friendly and cost-effective alternatives to synthetic fertilizers, plant growth regulators and crop improvement products. Broadly, plant biostimulants are expected to improve nutrient use efficiency, tolerance to abiotic stress, quality traits and availability of nutrients in the soil or rhizosphere. Currently, seaweed extracts account for more than 33% of the total plant biostimulant market. Within this category, Ascophyllum nodosum (AN), is the most widely studied and applied in biostimulant formulations.

A novel approach for the identification of new biomarkers of wine consumption in human urine using untargeted metabolomics

Wine is one of the most representative components of Mediterranean diet. Moderate wine intake together with food, has been positively correlated with reduced risk of many chronic diseases. This beneficial effect seems to be ascribed to elevated polyphenolic content of wine [1]. Traditional approaches for the identification of wine biomarkers consumption include targeted metabolomics that focuses on the quantification of well-defined metabolites, losing a valuable information about a massive number of compounds. On the other hand, untargeted metabolomics can disclose a large quantity of signals corresponding to potential biomarkers in a single analysis with high sensitivity and resolution.

Implications of the nature of organic mulches used in vineyards on grapevine water status, yield, berry quality and biological soil health  

Climate emergency is going to affect the agricultural suistainability, wine grapes being probably one of the crops more sensitive to environmental constraints. In this context, mitigation strategies such as the revalorization of agricultural wastes are paramount to cope with the current challenges. The use of organic mulches has been reported to reduce soil water evaporation and improve vine water status, reduce soil erosion, and increase soil organic matter with little impact on berry quality. However, less is known about their effects on the microbiote of vineyards.

Energy partitioning and functionality of photosystem II in water-stressed grapevines during heatwaves revealed by continuous measurements of chlorophyll fluorescence

The increased intensity and frequency of heatwaves, coupled with prolonged periods of drought, are a significant threat to viticulture worldwide. During these conditions the more exposed leaves can show visible symptoms of heat damage. We monitored the functionality of photosystem II (PSII) in the field to better understand the impact of heatwaves on canopy performance. A factorial experiment was established in summer 2023 using Shiraz grapevines in the Barossa valley of South Australia, involving water-stressed and well-watered vines.