terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effects of progeny in the modulation of the response to water stress in isohydric and anisohydric varieties

Effects of progeny in the modulation of the response to water stress in isohydric and anisohydric varieties

Abstract

Each grapevine variety has a specific water use regulation response under drought, and it is still unclear whether this regulation results from innate genotypic behavior (iso- and anisohydric), or is a response to environmental factors, namely recurrent water stress priming effects. In the present work, we explored the influence of the field-grown genotypes’ drought memory in the drought-response phenotype of their vegetative progenies, in Trincadeira (isohydric) and Castelão (anisohydric) varieties under a drought event followed by recovery in a glasshouse. Cuttings from both cultivars subjected to full irrigation (FI) and non-irrigation (NI) treatments for 5 consecutive years were used. Progenies were subjected to two irrigation treatments, well-watered (WW), where the soil was kept at field capacity, and water-stress (WS), where irrigation was withheld for 7 days. WS plants were then re-watered and kept at field capacity for 72h. Measurements and sampling were done in both progenies of both treatments, at 0h, 72h and 168h after the beginning of the treatment and after 24h and 72h of recovery. NI progenies from both cultivars had improved gas exchange parameters, better total plant hydraulic conductance under drought, and faster recovery than FI progenies. Nocturnal and diurnal transpiration were affected both by progeny and treatment. Leaf wax content was significantly enhanced by WS in both progenies, but it was higher in NI progenies. Stomatal conductance kinetic showed differences in the timing of stomatal aperture between progenies, in particular after water recovery. Leaf temperature (Tc) was similar in both varieties and progenies, but higher temperatures were measured under WS. Leaf temperature only recovered 72h after re-watering. Although isohydric and anisohydric genotypes exhibited different drought acclimation responses due to their inner genetic behavior, their underlying hydraulic, stomatal and photosynthetic regulatory mechanisms were also affected by historical origin. In this presentation, fundamental insights about potential priming mechanisms in grapevine will be further discussed.

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Olfa Zarrouk1,2†, João de Deus3*, Miguel Damasio3*, Ana Rodrigues4, José Silvestre3, Luisa Carvalho1†

1LEAF – Linking Landscape, Environment, Agriculture and Food Research Centre, Associate Laboratory TERRA, ISA-ULisboa, Lisboa, Portugal
2SFCoLAB – Laboratório Colaborativo para a Inovação Digital na Agricultura, Torres Vedras, Portugal
3INIAV – Instituto Nacional de Investigação Agrária e Veterinária, I.P., Oeiras, Portugal
4CEF – Centro de Estudos Florestais, Associate Laboratory TERRA, ISA-ULisboa, Lisboa, Portugal

Contact the author*

Keywords

thermal imaging, hydraulic conductance, stomatal conductance, transpiration

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Vineyard yield estimation using image analysis: assessing bunch occlusions and its dependency on fruiting zone canopy features

Performing accurate vineyard yield estimation is of upmost importance as it provides important benefits to the whole vine and wine industry. Recently, image-analysis approaches have been explored to address this issue however this approach has as main challenge the bunch occlusion, mostly by vegetation but also by neighboring bunches. The present work aims at assessing the magnitude of bunch occlusion by neighboring bunches and to evaluate its dependency on a selection of vegetative and reproductive vine parameters assessed at fruiting zone. Forty vine segments (1 m) of two vineyard plots of the white cultivars ‘Alvarinho’ and ‘Arinto’ were assessed for vegetative and reproductive features at fruiting zone and imaged with a 2D camera.

Evaluation of physiological properties of grapevine clones of ‘Tempranillo’ and ‘Graciano’ in DOCa Rioja (Spain)

In order to avoid the loss of grapevine intra-varietal diversity of DOCa Rioja grape varieties, Regional Government of La Rioja established a germplasm bank with more than 1.600 accessions, whose origin lies in the prospecting and sampling of ancient vineyards located throughout the whole region. 30 clones of Tempranillo and 13 clones of Graciano were preselected and multiplied in a new vineyard for further observations. The aim of this work is to describe the first results from the physiological characterization by an optical sensor of these preselected clones, which constitute the base of a new clonal selection that aims to increase the range of available certified clones and to improve the adaptation of these varieties to future objectives and environmental conditions.

Model-assisted analysis of the root traits underlying RSA genotypic diversity in Vitis: a promising approach for rootstock selection?

By dissecting the root system architecture (RSA) into its underpinning components (e.g. root emission, axial growth, radial growth, branching, root direction or tropism) and identifying the relationships between them, functional-structural 3D root models are promising tools for analyzing the diversity and complexity of root system phenotypes with Genotype × Environment interactions. The model parameters are assumed to be synthetic traits, less influenced by the environment, and consequently with less polygenic architectures than the integrative RSA traits they drive. Root models can serve as a basis for in silico development of root system ideotypes by highlighting the developmental processes and parameters that most likely influence RSA fitness.

Using climate services to project grapevine varietal adequation under climate change – application to cv. Tempranillo in the Douro wine region

Vine growth circumstances are becoming warmer and drier because of climate change. Higher temperatures advance ripening to a point in the season less conducive to the production of fine wine, while drought reduces yields (Van Leeuwen et al., 2019). Several wine-producing regions around the world have already recognized threats to their viticultural viability (Santos et al., 2020). An economical and cost-effective strategy for adaptation is the employment of late-ripening, drought-resistant plant material (varieties, clones, and rootstocks).

First results on the chemical composition of red wines from the pressing of marc

In the Bordeaux vineyards, press wine represents approximately 15% of the total volume of wine produced[1]. Valuing this large volume of wine is necessary from an economic point of view, but also because of their organoleptic contribution to the blend, and their contribution to the construction of wines for laying down. Therefore, this study was developed considering the lack of recent scientific knowledge on the composition of red press wines. The aim of this study is to establish an initial assessment of their chemical composition including aromatic compounds and a phenolic part.