terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Wine without added SO2: Oxygen impact and color evolution during red wine aging

Wine without added SO2: Oxygen impact and color evolution during red wine aging

Abstract

SO2 play a major role in wine stability and evolution during its aging and storage. Winemaking without SO2 is a big challenge for the winemakers since the lack of SO2 affects directly the wine chemical evolution such as the aromas compounds as well as the phenolic compounds. During the red wine aging, phenolic compounds such as anthocyanin, responsible of the red wine colour, and tannins, responsible of the mouthfeel organoleptic properties of wine, evolved quickly from the winemaking process to aging [1]. A lot of new interaction and molecules occurred lead by oxygen[2] thus the lack of SO2 will induce wine properties changes. Nowadays, the phenolic composition of the wine without added SO2 have not been clearly reported. The aims of this study is to characterise the impact of oxygen on the phenolic composition of the wine without added SO2 during ageing. A comparison between wines with and without SO2 have been performed. For the experiment, an identical wine without added SO2 during the vinification step have been divided in different steel tank and an increase amount of oxygen have been introduce. Oxygen consumption have been followed and after complete consumption of oxygen, wine samples have been collected for chemical and sensory analyses, and the same amount of oxygen have been introduce again. Different phenolic analysis have been performed. Anthocyanin’s evolution have been followed from the monomeric anthocyanin to the polymerized pigments. Condensed tannins evolution have also be carry out as well as the crown procyanidins. A correlation between the oxygen amount and anthocyanin’s evolution have been determined as well as the tannin’s evolution.

References:

  1. Drinkine J. et al. (2007) Ethylidene-bridged flavan-3-ols in red wine and correlation with wine age. Journal of Agricultural and Food Chemistry, 55: 6292–6299, https://doi.org/10.1021/jf070038w
  2. Zeng L. et al. (2016) Structures of polymeric pigments in red wine and their derived quantification markers revealed by high-resolution quadrupole time-of-flight mass spectrometry: Identification of polymeric pigments and their quantification markers. Rapid Communications in Mass Spectrometry, 30: 81–88, https://doi.org/10.1002/rcm.7416

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Jouin A, Ghidossi R, Teissedre P-L, Jourdes M 1

1 University Bordeaux, Bordeaux INP, Bordeaux Sciences Agro, INRAE, UMR 1366, OENO, ISVV F33140 Villenave d’Ornon, France

Contact the author*

Keywords

oxygen, red wine aging, wine without added SO2, phenolic compounds

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Prediction of aromatic attributes of red wines from its colour properties 

Wine perception is a multisensory experience that makes use of the sight, smell, and taste senses. When wine is sensorially assessed, the stimulus received generates multiple signals that tasters convert into organoleptic descriptors. Colour is commonly the first attribute evaluated during wine tasting. Moreover, the colour properties provide the taster with a priori information of the wine’s aroma. This preconceived perception is later confirmed or denied during the aroma evaluation.

Limiting magnesium availability: a novel approach to managing brettanomyces spoilage in winemaking

Brettanomyces is a world-renowned yeast that negatively impacts the chemical composition of wines through the production of metabolites that negatively impact the sensory properties of the final product. Its resilience in wine conditions and ability to produce off-flavors make it a challenge for winemakers. Currently, the primary control technique involves adding sulfur dioxide (SO2); however, some Brettanomyces strains are developing resistance to this preservative agent. [1] Therefore, new management strategies are necessary to control this spoilage yeast.

Effect of biological control agents on grapevine rhizosphere microbiome and grapevine defenses

Plant diseases are a major obstacle to crop production. The main approaches to battle plant diseases, consist of synthetic chemicals to attack infecting pathogens. However, concerns are increasing about the effects of chemicals in the environment, leading to an increase in the use of biocontrol agents (BCAs), due to their assets, such as, antagonism, and competition. In this study, we tested the hypothesis that the introduction of Bacillus subtilis PTA-271 (Bs PTA-271) and Trichoderma atroviride SC1 (Ta SC1) produce distinctive modifications in the composition and network structure of the grapevine rhizosphere microbial community, as well as grapevine induced defenses.

Extreme vintages affect grape varieties differently: a case study from a cool climate wine region

Eger wine region is located on the northern border of grapevine cultivation zone. In the cool climate, terroir selection is one of the foundations of quality wine making. However, climate change will have a significant impact on these high value-added vineyards. This study presents a case study from 2021 and 2022 with the investigation of three grape varieties (Kadarka, Syrah, Furmint). The experiment was conducted in a steep-sloped vineyard (Nagy-Eged hill) with a southern exposure.

Physico-chemical properties of vine pruning residues with potential as enological additive

Grapes are one of the world’s primary fruit crops, and pruning activities generate high amounts of annual wood wastes [1]. These pruning shoots contain valuable phenolic compounds and could have numerous potential applications [1,2]. Consequently, the aim of this work was to evaluate the physico-chemical properties of vine pruning residues with potential as enological additives. For this purpose, grapevine shoots from 12 varieties grown in Chile were collected during the winter of 2021.