terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Sparkling wines and atypical aging: investigating the risk of refermentation

Sparkling wines and atypical aging: investigating the risk of refermentation

Abstract

Sparkling wine (SW) production entails a two-steps process where grape must undergoes a primary fermentation to produce a base wine (BW) which is then refermented to become a SW. This process allows for the development of a new physicochemical profile characterized by the presence of foam and a different organoleptic profile.

Atypical aging is a sensorial fault that can occur soon after bottling. Characterized by the appearance of unpleasant scents (mothballs, damp towel and furniture polish) and the loss of varietal aroma, its chemical and sensorial origin is attributed to the presence of 2-aminoacetophenone (AAP), a degradation compound of indole-3-lactic acid (IAA). While at biological level this plant auxin is carefully regulated via bonding with amino acids or sugars, during fermentation, yeast is capable of freeing up unbound IAA. In the presence of oxidizing agents, its conversion into AAP leads to the appearance of ATA in wine.[1] Since yeast-related biochemical mechanisms are involved in the development of this fault and SW production entails a double fermentation process, the final product deserves extra attention in terms of ATA development. Therefore, the aim of this study was to evaluate the likelihood of producing tainted SW. To do so, 55 grape musts of 12 different varieties harvested over three vintages were fermented twice, initially to make the BWs and then the SWs. Interestingly, it was found that not only refermentation and storage increased the AAP content but also that the danger of producing ATA-tainted wines does not end with the making of SW. Indeed, upon an accelerated aging test, it was observed that the concentration of AAP was even increased. By using the data obtained from the BW samples, an ANCOVA model of linearization able to predict the formation of AAP upon refermentation with a R2 of 0.7 was created.

Acknowledgements: The authors would like to thank Cavit sc. for the technical and financial support.

References: 

1)  Schneider V. (2014) Atypical aging defect: Sensory discrimination, viticultural causes, and enological consequences. Rev. Am. J. Enol. Vitic., 65:277–284, DOI 10.5344/ajev.2014.14014
2)  Christoph, N., et al. (1998) Bildung von 2-Aminoacetophenon und Formylaminoacetophenon im Wein durch Einwirkung von schwefliger Säure auf Indol-3-essigsäure. Vitic. Enol. Sci 53.2, 79-86.

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Simone Delaiti1,2*, Tomas Roman2, Tiziana Nardin2, Stefano Pedo’2, Roberto Larcher2

1C3A, Center Agriculture Food Environment, Via Edmund Mach, 1, San Michele all’Adige, TN, 38010 Italy
2Technology Transfer Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy

Contact the author*

Keywords

atypical aging, sparkling wine, refermentation

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Long-lasting flavour perception of wines treated with oenological additives considering the individual PROP taste-phenotype

The use of oenological additives is becoming a common practice due to the technological and sensory properties they provide to the wines. However, the number of studies focused on the impact that these additives might induce on wine flavor perception during wine tasting is still quite scarce. The aim of this work was to evaluate the effect of three different types of common oenological additives: two oenotannins (ellagitannin and gallotannin) and a commercial preparation of yeast mannoproteins on the long-lasting flavor perception (aroma and astringency).

Water and nutritional savings shape non-structural carbohydrates in grapevine (Vitis vinifera L.) cuttings

Global changes and sustainability challenge researchers in saving water and nutrients. The response of woody crops, which can be forced at facing more drought events during their life, is particularly important. Vitis vinifera can be an important model for its relevance in countries subjected to climate changes and its breeding, requiring cuttings plantation and strong pruning.

Polyphenol content of cork granulates at different steps of the manufacturing process of microagglomerated stoppers treated with supercritical CO2 used for wine bottling

The wine closure industry is mainly divided into three categories: screw caps, synthetic closures, and cork-based closures. Among this latter, microagglomerated cork stoppers treated with supercritical CO2 are now widely used, especially to avoid cork taint contaminations[1]. They are designed with cork granules obtained from cork offcuts of the punching process during the natural cork stoppers production. A previous study[2] showed that these stoppers released fewer polyphenols in 12 % (v/v) hydroalcoholic solution than natural cork stoppers.

Influence of different Lachancea thermotolerans strains in wine acidity

Wine acidity is a parameter of great importance that influences different quality factors of the product such as biological stability or organoleptic characteristics. In the current context of climate change, which gives rise to wines with higher levels of ethanol and lower acidity, the biological acidification with yeast species such as Lachancea thermotolerans could be a solution.
In this work, the effect of the inoculation of different L. thermotolerans on the acidity of wine was studied.

Impact of polyclonal selection for abiotic stress tolerance on the yield and must quality traits of grapevine varieties

The effects of climate change in viticulture are currently a major concern, with heat waves and drought affecting yield, wine quality, and in extreme cases, even plant survival. Ancient grapevine varieties have high intravarietal genetic variability that so far has been explored successfully to improve yield and must quality. Currently, there is little information available on intravarietal variability regarding responses to stress. In the current work, the intravarietal genetic variability of several Portuguese varieties was studied for yield, must quality, and tolerance to abiotic stress, through indirect, rapid, and nondestructive measurements carried out in the field.