terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Sparkling wines and atypical aging: investigating the risk of refermentation

Sparkling wines and atypical aging: investigating the risk of refermentation

Abstract

Sparkling wine (SW) production entails a two-steps process where grape must undergoes a primary fermentation to produce a base wine (BW) which is then refermented to become a SW. This process allows for the development of a new physicochemical profile characterized by the presence of foam and a different organoleptic profile.

Atypical aging is a sensorial fault that can occur soon after bottling. Characterized by the appearance of unpleasant scents (mothballs, damp towel and furniture polish) and the loss of varietal aroma, its chemical and sensorial origin is attributed to the presence of 2-aminoacetophenone (AAP), a degradation compound of indole-3-lactic acid (IAA). While at biological level this plant auxin is carefully regulated via bonding with amino acids or sugars, during fermentation, yeast is capable of freeing up unbound IAA. In the presence of oxidizing agents, its conversion into AAP leads to the appearance of ATA in wine.[1] Since yeast-related biochemical mechanisms are involved in the development of this fault and SW production entails a double fermentation process, the final product deserves extra attention in terms of ATA development. Therefore, the aim of this study was to evaluate the likelihood of producing tainted SW. To do so, 55 grape musts of 12 different varieties harvested over three vintages were fermented twice, initially to make the BWs and then the SWs. Interestingly, it was found that not only refermentation and storage increased the AAP content but also that the danger of producing ATA-tainted wines does not end with the making of SW. Indeed, upon an accelerated aging test, it was observed that the concentration of AAP was even increased. By using the data obtained from the BW samples, an ANCOVA model of linearization able to predict the formation of AAP upon refermentation with a R2 of 0.7 was created.

Acknowledgements: The authors would like to thank Cavit sc. for the technical and financial support.

References: 

1)  Schneider V. (2014) Atypical aging defect: Sensory discrimination, viticultural causes, and enological consequences. Rev. Am. J. Enol. Vitic., 65:277–284, DOI 10.5344/ajev.2014.14014
2)  Christoph, N., et al. (1998) Bildung von 2-Aminoacetophenon und Formylaminoacetophenon im Wein durch Einwirkung von schwefliger Säure auf Indol-3-essigsäure. Vitic. Enol. Sci 53.2, 79-86.

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Simone Delaiti1,2*, Tomas Roman2, Tiziana Nardin2, Stefano Pedo’2, Roberto Larcher2

1C3A, Center Agriculture Food Environment, Via Edmund Mach, 1, San Michele all’Adige, TN, 38010 Italy
2Technology Transfer Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy

Contact the author*

Keywords

atypical aging, sparkling wine, refermentation

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Genetic prospecting of rainfed viticulture in the region with the largest cultivated area in Chile

The Maule region hosts up to a third of the total area of vineyards in Chile, in an environment where ancient practices inherited from the colonial past coexist with modernity and dynamism that include technified irrigation and fine vines. In the dry land of Maule there is a viticulture that has subsisted with ancient vines and traditions transmitted over generations, and there is little clarity about the origin and classification of the Maule viticulture, giving rise to the use of different concepts as synonyms to describe the ancient, minority, patrimonial or Criollas vines. In order to characterize and protect the ancient material, we studied the genetic diversity of a territorial collection that covers 80% of the communes of the region, prioritizing plants established more than 40-60 years ago.

Induction of polyphenols in seedlings of Vitis vinifera cv. Monastrell by the application of elicitors

Contamination problems arising from the use of pesticides in viticulture have raised concerns. One of the alternatives to reduce contamination is the use of elicitors, molecules capable of stimulating the natural defences of plants, promoting the production of phenolic compounds (PC) that offer protection against biotic and abiotic stress. Previous studies on Cabernet-Sauvignon seedlings demonstrated that foliar application of elicitors methyl jasmonate (MeJ) and benzothiadiazole (BTH) increased proteins and PC involved in grapevine defence mechanisms. However, no trials had been conducted on Monastrell seedlings, a major winegrape variety in Spain.

Potential of new genetic resources to improve drought adaptation of grapevine rootstocks

Grapevines are grown mainly as grafts worldwide, but the rootstocks most commonly used were selected between the late 19th and early 20th centuries and are based on reduced genetic diversity[1]. In the context of climate change, it is indeed urgent to diversify the range of rootstocks with genotypes much more adapted to drier environments, than the existing ones[2]. The aim of this study was to evaluate the potential of new genetic resources for grapevine rootstock breeding programs. For this purpose, 12 American and Asian wild Vitis species (3 to 5 accessions per species = 50 accessions) were evaluated for their rooting ability and drought response.

Biotype diversity within the autochthonous ‘Bobal’ grapevine variety

Bobal is the second most widely grown Spanish red grape variety (54,165 has), mainly cultivated in the Valencian Community and especially, in Utiel-Requena region (about 67% of 34,000 has). In this study, agronomic and enological parameters were determined in 98 biotypes selected during 2018 and 2019 in more than 50 vineyards over 50 years-old in the Utiel-Requena region. Moreover, a multi-criteria approach considering temperature and rainfall (Fig. 1A), among other parameters, was made to establish three different zones within the region (Fig. 1B), where in the future the selected biotypes will evaluated. In fact, in 2020, 4 replicates and 12 vines per biotype were planted in an experimental vineyard to preserve this important intra-cultivar diversity.

Genetic variation among wild grapes native to Japan

Domesticated grapes are assumed to have originated in the Middle East. However, a considerable number of species are native in East Asian countries such as China, Korea and Japan as well. Evidence suggests that a total of seven species and eight varieties have been found to be native to Japan. A wide level variation in morphology, genetic and fruit composition exist in wild grape native to Japan.