terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Role of anthocyanins and copigmentation in flavonol solubility in red wines 

Role of anthocyanins and copigmentation in flavonol solubility in red wines 

Abstract

Over the last years, due to climate change, several red wines, such as the Sangiovese wines, have been often subjected to loss of clarity due to the formation of deposits of fine needle-shaped crystals. This phenomenon turned out to be due to an excess of quercetin (Q) and its glycosides (Q-Gs) in wines. These compounds are synthesized to a large extent when grapes are excessively exposed to UVB radiations in vineyards[1]. Unfortunately, it is not easy to predict the degree of Q precipitation because its solubility strongly depends on the wine and matrix composition[2].  Surprisingly, some red wines rich in anthocyanins, even if contained high amount of Q, did not show any precipitates. Likely anthocyanins favour the solubility of Q since flavonols are among the most powerful cofactors involved in the copigmentation phenomenon. Thus, in this study, the role of anthocyanins in Q solubility was evaluated by adding known amounts of grape-derived anthocyanins into model solutions containing either Q or Q-Gs. The effects of pH and time on the Q solubility, copigmentation as well as on the hydrolysis of Q-Gs were determined. Our data showed that the solubility of Q passed from 5 mg/L to 25 mg/L when the amount of grape-derived anthocyanins added into the model solutions increased from 0 to 500 mg/L. Experimental samples were investigated over 30 days and significant changes in Q solubility, correlated to the variation in copigmentation and in anthocyanins/quercetin ratio, were observed. These results can assist wine producers to better evaluate the level of flavonol precipitation in red wines and to develop appropriate strategies in order to avoid undesired precipitations in bottle.   

Acknowledgements: The authors would like to thank the Biolaffort Company for funding.

References:

1) Martínez-Lüscher J. et al. (2019). Flavonol profile is a reliable indicator to assess canopy architecture and the exposure of red wine grapes to solar radiation. Frontiers in plant science, 10, 10. DOI 10.3389/fpls.2019.00010.

2) Gambuti A. et al. (2020). New insights into the formation of precipitates of quercetin in Sangiovese wines. Journal of Food Science and Technology, 57, 2602-2611. DOI 10.1007/s13197-020-04296-7

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Alessandra Luciano1, Luigi Picariello1, Martino Forino1, Angelita Gambuti1*

1 Department of Agricultural Sciences, Section of Vine and Wine Sciences, University of Napoli ″Federico II″, Viale Italia, Avellino 83100, Italy

Contact the author*

Keywords

quercetin, quercetin glycosides, solubility, red wines, anthocyanins, copigmentation crystals, precipitation

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Quantification of polysaccharides of variety Pomaces of the D.O.Ca Rioja

Pomace is one of the main residues generated by the wine industry and represents an environmental problem. Currently, there is a growing interest in the revaluation of these products because different bioactive compounds can be obtained from them, such as polyphenols, grape seed oils and polysaccharides. Red grape pomace can be an important source of polysaccharides, but they are currently little studied and even less with viable and environmental extraction processes (green extraction), such as flash extraction. The residual amount of the fraction rich in pectin (residual pulp) and component rich in hemicellulose in the pomace and the strength of association of the pectin with the cellulose-xyloglucan network depend on the degree of extractability of the polysaccharides in red winemaking and on the winemaking conditions.

Effects of long-term drought stress on soil microbial communities from a Syrah cultivar vineyard

Changes in the rainfall and temperature patterns affect the increase of drought periods becoming one of the major constraints to assure agricultural and crop resilience in the Mediterranean regions. Beside the adaptation of agricultural practices, also the microbial compartment associated to plants should be considered in the crop management. It is known that the microbial community change according to several factors such as soil composition, agricultural management system, plant variety and rootstock.

Energy partitioning and functionality of photosystem II in water-stressed grapevines during heatwaves revealed by continuous measurements of chlorophyll fluorescence

The increased intensity and frequency of heatwaves, coupled with prolonged periods of drought, are a significant threat to viticulture worldwide. During these conditions the more exposed leaves can show visible symptoms of heat damage. We monitored the functionality of photosystem II (PSII) in the field to better understand the impact of heatwaves on canopy performance. A factorial experiment was established in summer 2023 using Shiraz grapevines in the Barossa valley of South Australia, involving water-stressed and well-watered vines.

Plastic debris at vines: carriers of pollutants in the environment?

Modern agriculture employs large amounts of plastics, such as mulching and greenhouse films, thermal covers, plant protection tubes and tying tape. The latter two types are very common in viticulture. Guard tubes are employed to protect young vines from mechanic and atmospheric damage, whilst polymeric tying tape has replaced natural-origin materials to hold the canopy of vines. Both materials are made on synthetic polymers, which include a range of additives to improve their environmental stability remaining in the environment of vineyards for years. During this time, they are exposed to the range of pesticides (fungicides, insecticides and in a lesser extend herbicides) applied to vines.

Effect of foliar application of urea and nano-urea on the cell wall of Monastrell grape skins

The foliar application of urea has been shown to be able to satisfy the specific nutritional needs of the vine as well as to increase the nitrogen composition of the must. On the other hand, the use of nanotechnology could be of great interest in viticulture as it would help to slow down the release of urea and protect it against possible degradation. Several studies indicate that cell wall synthesis and remodeling are affected by nitrogen availability.