terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Role of anthocyanins and copigmentation in flavonol solubility in red wines 

Role of anthocyanins and copigmentation in flavonol solubility in red wines 

Abstract

Over the last years, due to climate change, several red wines, such as the Sangiovese wines, have been often subjected to loss of clarity due to the formation of deposits of fine needle-shaped crystals. This phenomenon turned out to be due to an excess of quercetin (Q) and its glycosides (Q-Gs) in wines. These compounds are synthesized to a large extent when grapes are excessively exposed to UVB radiations in vineyards[1]. Unfortunately, it is not easy to predict the degree of Q precipitation because its solubility strongly depends on the wine and matrix composition[2].  Surprisingly, some red wines rich in anthocyanins, even if contained high amount of Q, did not show any precipitates. Likely anthocyanins favour the solubility of Q since flavonols are among the most powerful cofactors involved in the copigmentation phenomenon. Thus, in this study, the role of anthocyanins in Q solubility was evaluated by adding known amounts of grape-derived anthocyanins into model solutions containing either Q or Q-Gs. The effects of pH and time on the Q solubility, copigmentation as well as on the hydrolysis of Q-Gs were determined. Our data showed that the solubility of Q passed from 5 mg/L to 25 mg/L when the amount of grape-derived anthocyanins added into the model solutions increased from 0 to 500 mg/L. Experimental samples were investigated over 30 days and significant changes in Q solubility, correlated to the variation in copigmentation and in anthocyanins/quercetin ratio, were observed. These results can assist wine producers to better evaluate the level of flavonol precipitation in red wines and to develop appropriate strategies in order to avoid undesired precipitations in bottle.   

Acknowledgements: The authors would like to thank the Biolaffort Company for funding.

References:

1) Martínez-Lüscher J. et al. (2019). Flavonol profile is a reliable indicator to assess canopy architecture and the exposure of red wine grapes to solar radiation. Frontiers in plant science, 10, 10. DOI 10.3389/fpls.2019.00010.

2) Gambuti A. et al. (2020). New insights into the formation of precipitates of quercetin in Sangiovese wines. Journal of Food Science and Technology, 57, 2602-2611. DOI 10.1007/s13197-020-04296-7

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Alessandra Luciano1, Luigi Picariello1, Martino Forino1, Angelita Gambuti1*

1 Department of Agricultural Sciences, Section of Vine and Wine Sciences, University of Napoli ″Federico II″, Viale Italia, Avellino 83100, Italy

Contact the author*

Keywords

quercetin, quercetin glycosides, solubility, red wines, anthocyanins, copigmentation crystals, precipitation

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

New oenological criteria for selecting strains of Lachancea thermotolerans for wine technology

The study conducted various fermentations of different grape juices using various strains of Lachancea thermotolerans and one strain of Saccharomyces cerevisiae. Because of the new conditions caused by climate change, wine acidity must be influenced as well as the volatile profile. Non-Saccharomyces yeasts such as L. thermotolerans are real options to mitigate the impact of climate change in wine production.

Physicochemical behaviour of wine spirit and wine distillate aged in Sherry Casks® and Brandy casks

Brandy is a spirit drink made from “wine spirit” (<86% Alcohol by Volume – ABV; high levels of congeners and they are mainly less volatile than ethanol), it may be blended with a “wine distillate” (<94.8%ABV; low levels of congeners and these are mainly more volatile than ethanol), as long as that distillate does not exceed a maximum of 50% of the alcoholic content of the finished product[1]. Brandy must be aged for at least 6 months in oak casks with <1000L of capacity. During ageing, changes occur in colour, flavour, and aroma that improve the quality of the original distillate.

Limiting magnesium availability: a novel approach to managing brettanomyces spoilage in winemaking

Brettanomyces is a world-renowned yeast that negatively impacts the chemical composition of wines through the production of metabolites that negatively impact the sensory properties of the final product. Its resilience in wine conditions and ability to produce off-flavors make it a challenge for winemakers. Currently, the primary control technique involves adding sulfur dioxide (SO2); however, some Brettanomyces strains are developing resistance to this preservative agent. [1] Therefore, new management strategies are necessary to control this spoilage yeast.

Defoliation combined with exogenous ABA application results in slower ripening and improved anthocyanin profile

Reducing sugar accumulation in grape (Vitis vinifera L.) berries may be a way to mitigate the effect of climate change. Managing canopy and crop load is an effective way to do so, however, reducing canopy size has been demonstrated to induce undesirable effects on anthocyanins. The aim of this study was to test if an application of exogenous ABA on the grape berries of defoliated vines (⅔ of the leaves removed) can result in slower sugar accumulation while maintaining grape and wine quality. An experiment with defoliation and exogenous ABA application on directly on clusters (factorial design 2×2) was performed with ‘Tempranillo’ fruit-bearing cuttings.

Advancing grapevine science through genomic research

The seminar will examine the complexities and prospects of genomic research on Vitis species, characterize by exceptionally high heterozygosity and common interspecific gene flow. The seminar will showcase case studies highlighting the critical role of diploid genome references in grape research, specifically in areas such as aroma development, disease resistance, and domestication traits. It will also address the emerging focus on pangenomes within the Vitis genus, particularly in the context of genetic studies on naturally interbreeding populations.