terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Role of anthocyanins and copigmentation in flavonol solubility in red wines 

Role of anthocyanins and copigmentation in flavonol solubility in red wines 

Abstract

Over the last years, due to climate change, several red wines, such as the Sangiovese wines, have been often subjected to loss of clarity due to the formation of deposits of fine needle-shaped crystals. This phenomenon turned out to be due to an excess of quercetin (Q) and its glycosides (Q-Gs) in wines. These compounds are synthesized to a large extent when grapes are excessively exposed to UVB radiations in vineyards[1]. Unfortunately, it is not easy to predict the degree of Q precipitation because its solubility strongly depends on the wine and matrix composition[2].  Surprisingly, some red wines rich in anthocyanins, even if contained high amount of Q, did not show any precipitates. Likely anthocyanins favour the solubility of Q since flavonols are among the most powerful cofactors involved in the copigmentation phenomenon. Thus, in this study, the role of anthocyanins in Q solubility was evaluated by adding known amounts of grape-derived anthocyanins into model solutions containing either Q or Q-Gs. The effects of pH and time on the Q solubility, copigmentation as well as on the hydrolysis of Q-Gs were determined. Our data showed that the solubility of Q passed from 5 mg/L to 25 mg/L when the amount of grape-derived anthocyanins added into the model solutions increased from 0 to 500 mg/L. Experimental samples were investigated over 30 days and significant changes in Q solubility, correlated to the variation in copigmentation and in anthocyanins/quercetin ratio, were observed. These results can assist wine producers to better evaluate the level of flavonol precipitation in red wines and to develop appropriate strategies in order to avoid undesired precipitations in bottle.   

Acknowledgements: The authors would like to thank the Biolaffort Company for funding.

References:

1) Martínez-Lüscher J. et al. (2019). Flavonol profile is a reliable indicator to assess canopy architecture and the exposure of red wine grapes to solar radiation. Frontiers in plant science, 10, 10. DOI 10.3389/fpls.2019.00010.

2) Gambuti A. et al. (2020). New insights into the formation of precipitates of quercetin in Sangiovese wines. Journal of Food Science and Technology, 57, 2602-2611. DOI 10.1007/s13197-020-04296-7

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Alessandra Luciano1, Luigi Picariello1, Martino Forino1, Angelita Gambuti1*

1 Department of Agricultural Sciences, Section of Vine and Wine Sciences, University of Napoli ″Federico II″, Viale Italia, Avellino 83100, Italy

Contact the author*

Keywords

quercetin, quercetin glycosides, solubility, red wines, anthocyanins, copigmentation crystals, precipitation

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Evaluation of phenology, agronomic and oenological quality in minority wine varieties in Madrid as a strategy for adaptation to climate change

The main phenological stages (budburst, flowering, veraison, and ripeness) and the fruit composition of 34 Spanish minority varieties were studied to determine their cultivation potential and help winegrowers adapt their production systems to climate change conditions. In total, 4 control cultivars, and 30 minority varieties from central Spain were studied during a period of 3 campaigns, in the ampelographic collection “El Encín”, in Alcalá de Henares, Madrid. Agronomic and oenological characteristics such as yield, and total soluble solids concentration have been monitored.

Influence of p-Coumaric Acid and Micronutrients on Growth and 4-Ethylphenol Production by Brettanomyces bruxellensis

The wine spoilage caused by Brettanomyces bruxellensis is one of the global concerns for winemakers. Detecting the presence of B. bruxellensis using routine laboratory culture techniques becomes challenging when cells enter the viable but not culturable (VBNC) state. This study aims to investigate the impact of p-coumaric acid (a volatile phenol precursor) and micronutrients on B. bruxellensis’ culturability, viability, and volatile phenol production under sulfite stress. In red wine, exposure to a high sulfite dose (100.00 mg L-1 potassium metabisulfite) resulted in immediate cell death, followed by a recovery of culturability after two weeks.

Association between dietary pattern and wine consumption and Alzheimer’s disease in a cohort from La Rioja (Spain)

Addressing modifiable risk factors is the most promising strategy to prevent/delay Alzheimer Disease (AD)[1]. The aim of the study was to establish the connections between dietetic habits, wine consumption and AD. Thus, 98 volunteers were recruited: 50 diagnosed as AD and 48 healthy/controls. The Food Frequency Questionnaire (FFQ) was used for dietary patterns assessment and, based on these data, the Mind Diet Score was calculated. (Poly)phenol metabolites (especially derived from wine consumption) were analyzed by UPLC-QqQ-MS/MS in 24-h urine samples to confirm dietary (poly)phenol consumption.

Can soil nitrate explain polyphenol and anthocyanin content in vineyard with similar available soil water regime? 

Nitrogen (N) is quite important nutrient in grapevine development and must quality, but under Mediterranean climatic conditions, available soil water (ASW) during grapevine development can also influence vigour and must quality. The aim was to determine the influence of soil nitrate (NO3-) availability on N foliar, yield, and must quality in vineyards with similar available water holding capacity (AWC). For this purpose, four cv. Tempranillo (Vitis vinifera L.) vineyards were selected. All of them are placed in Uruñuela municipality (La Rioja, Spain), separated less than 2.5 km and in a slope <1 %, in soils with similar soil chemistry properties and with similar rooting depth (ranging between 105 cm and 110 cm).

Ultra-High Pressure Homogenization (UHPH): a technique that allows the reduction of SO2 in winemaking

Ultra-High Pressure Homogenization (UHPH) is an innovative, efficient and non-thermal technology that can be applied at different stages in winemaking in order to reduce or avoid the use of sulphites. During 2022 vintage, a batch of Xarel·lo must was processed by UHPH at 300 MPa with an inlet temperature (Ti) of 4 ºC. In order to verify the influence of the UHPH treatment in wine characteristics, alcoholic fermentations with this must (UHPH) were carried out and compared with a control batch (without SO2 addition (C)) and a sulphited batch, in which 60 mg/L of total SO2 (SO2) were added.