terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Role of anthocyanins and copigmentation in flavonol solubility in red wines 

Role of anthocyanins and copigmentation in flavonol solubility in red wines 

Abstract

Over the last years, due to climate change, several red wines, such as the Sangiovese wines, have been often subjected to loss of clarity due to the formation of deposits of fine needle-shaped crystals. This phenomenon turned out to be due to an excess of quercetin (Q) and its glycosides (Q-Gs) in wines. These compounds are synthesized to a large extent when grapes are excessively exposed to UVB radiations in vineyards[1]. Unfortunately, it is not easy to predict the degree of Q precipitation because its solubility strongly depends on the wine and matrix composition[2].  Surprisingly, some red wines rich in anthocyanins, even if contained high amount of Q, did not show any precipitates. Likely anthocyanins favour the solubility of Q since flavonols are among the most powerful cofactors involved in the copigmentation phenomenon. Thus, in this study, the role of anthocyanins in Q solubility was evaluated by adding known amounts of grape-derived anthocyanins into model solutions containing either Q or Q-Gs. The effects of pH and time on the Q solubility, copigmentation as well as on the hydrolysis of Q-Gs were determined. Our data showed that the solubility of Q passed from 5 mg/L to 25 mg/L when the amount of grape-derived anthocyanins added into the model solutions increased from 0 to 500 mg/L. Experimental samples were investigated over 30 days and significant changes in Q solubility, correlated to the variation in copigmentation and in anthocyanins/quercetin ratio, were observed. These results can assist wine producers to better evaluate the level of flavonol precipitation in red wines and to develop appropriate strategies in order to avoid undesired precipitations in bottle.   

Acknowledgements: The authors would like to thank the Biolaffort Company for funding.

References:

1) Martínez-Lüscher J. et al. (2019). Flavonol profile is a reliable indicator to assess canopy architecture and the exposure of red wine grapes to solar radiation. Frontiers in plant science, 10, 10. DOI 10.3389/fpls.2019.00010.

2) Gambuti A. et al. (2020). New insights into the formation of precipitates of quercetin in Sangiovese wines. Journal of Food Science and Technology, 57, 2602-2611. DOI 10.1007/s13197-020-04296-7

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Alessandra Luciano1, Luigi Picariello1, Martino Forino1, Angelita Gambuti1*

1 Department of Agricultural Sciences, Section of Vine and Wine Sciences, University of Napoli ″Federico II″, Viale Italia, Avellino 83100, Italy

Contact the author*

Keywords

quercetin, quercetin glycosides, solubility, red wines, anthocyanins, copigmentation crystals, precipitation

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Effects of progeny in the modulation of the response to water stress in isohydric and anisohydric varieties

Each grapevine variety has a specific water use regulation response under drought, and it is still unclear whether this regulation results from innate genotypic behavior (iso- and anisohydric), or is a response to environmental factors, namely recurrent water stress priming effects. In the present work, we explored the influence of the field-grown genotypes’ drought memory in the drought-response phenotype of their vegetative progenies, in Trincadeira (isohydric) and Castelão (anisohydric) varieties under a drought event followed by recovery in a glasshouse. Cuttings from both cultivars subjected to full irrigation (FI) and non-irrigation (NI) treatments for 5 consecutive years were used.

Genetic identification of 200-year-old Serbian grapevine herbarium

Botanist Andreas Raphael Wolny collected a grapevine herbarium from 1812-1824 in Sremski Karlovci (wine region of Vojvodina, Serbia), which represents local cultivated grapevine diversity before the introduction of grape phylloxera in the region. The herbarium comprises over 100 samples organized into two subcollections based on berry colour (red and white varieties), totaling 47 different grape varieties. The objective of this study was to investigate the historical varietal assortment of Balkan and Pannonian winegrowing areas with long viticulture traditions.

Effect of different plant fibers on the elimination of undesirable compounds in red wine. Correlation with its polysaccharide composition

The presence of undesirable compounds in wines, such as OTA, biogenic amines and pesticides residues, affects wine quality and can cause health problems for the consumer. The main tool that a winemaker has to reduce their content in the wine is fining. However, some of the fining agents commonly used in the winery can cause allergies or even increase the protein content in the wine, increasing the turbidity. To avoid these problems, the use of plant fibers may be an alternative, such as those from grape pomace[1] or other plant origins.

Under-vine management effects on grapevine vegetative growth, gas exchange and rhizosphere microbial diversity

The use of cover crops under the vines might be an alternative to the use of herbicides or tillage, improving grapevine quality and soil characteristics. The aim of this research was to study the implications of different management strategies of the soil under the vines (herbicide, cultivation or cover crops) on grapevine growth, water and nutritional status, gas exchange parameters and belowground microbial communities.
The experimental design consisted in 4 treatments applied on 35L-potted Tempranillo vegetative grapevines with 10 replicates each grown in an open-top greenhouse in 2022 and 2023. Treatments included two cover crop species (Trifolium fragiferum and Bromus repens), herbicide (glyphosate al 36%) and an untreated control.

The potential of some native varieties of Argentina for the production of sparkling wines. Effect of lees contact time 

Grapevine varieties from South-America, commonly known as criollas, originated because of the natural crossbreeding of grapevine varieties brought by the Spaniards. The objective of this work was to evaluate the potential of some varieties to produce sparkling wines considering the effect of lees contact time. The following varieties were used: Moscatel Rosado, Criolla Chica, Pedro Gimenez, Blanca Oval, Canelón, and the European variety Chardonnay (control), planted in the ampelographic collection of EEA Mendoza INTA (Argentina). Pilot-scale vinifications were carried out to obtain the base wines, in 20 L glass containers. The second fermentation was performed through the traditional method.