terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Perception, liking and emotional response of tropical fruit aromas in Chardonnay wines

Perception, liking and emotional response of tropical fruit aromas in Chardonnay wines

Abstract

Tropical fruit aromas in wines are thought to be important to wine consumers, although there is little research to confirm this statement. With so many wine styles available, it has become important to understand the qualities that are desirable to consumers and how to achieve those qualities. Thiols and esters are compounds that have been found to cause tropical fruit aromas in chardonnay (ref). Fermentation temperature gradients and skin contact were found to increase these compounds using micro scale fermentations. This work aimed to scale up these fermentations/operations to determine if the desired tropical fruit aromas could still be achieved and if there is a perceivable difference in tropical fruit aromas, liking, and emotional response in the wines at the consumer level. Four treatments were tested at varying fermentation temperature gradients and skin contact times: control (SC0FG0), skin contact (SC1FG0), no skin contact fermentation gradient (SC0FG1), skin contact fermentation gradient (SC1FG1). Chemical analysis and descriptive sensory analysis were conducted to determine the alterations on the composition and aroma profiles of these wines. Check-all-that-apply (CATA) showed different prominent aromas for each wine treatment, with pome fruit, stone fruit, pineapple, honeysuckle, honey, and passionfruit being the most perceived aromas. Descriptive analysis (DA) showed that SC1FG0 was significantly different from both SC0FG1 and SC1FG1. SC1FG0 presented the most tropical fruit aromas, SC1FG1 presented more stone fruit, and SC0FG1 presented more honey and lemon/lime. Liking at the consumer level showed two liking clusters while emotional response showed a significant difference with wines with tropical fruit and other fruity aromas associated with positive emotions. Combining these descriptive and emotional sensory results can be used to help guide winemaker decisions when trying to achieve consistent tropical fruit aromas in chardonnay wines.

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Chase Lucas1, Angelica Iobbi1, Amanda Dupas De Matos2, Elizabeth Tomasino1

1Department of Food Science and Technology, Oregon State University, 100 Wiegand Hall, Corvallis, OR 97331, USA
2Food Experience and Sensory Testing (Feast) Lab, Massey University, Private Bag 11222, Palmerston North, Wanganui-Manawatu 4410, New Zealand

Contact the author*

Keywords

EsSense25, CATA, fermentation gradient, skin contact, wine

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Performance of Selected Uruguayan Native Yeasts for Tannat Wine Production at Pilot Scale

The wine industry is increasing the demand for indigenous yeasts adapted to the terroir to produce unique wines that reflect the distinctive characteristics of each region. In our group, we have identified and characterized 60 native yeast strains isolated from a vineyard in Maldonado-Uruguay, in which three strains stood out: Saccharomyces cerevisiae T193FS, Saturnispora diversa T191FS, and Starmerella bacillaris T193MS. Their oenological potential was evaluated at a semi-pilot scale in Tannat must vinification in the wine cellar to have a more precise and representative evaluation of the final product.

Foliar application of urea improved the nitrogen composition of Chenin grapes

The nitrogen composition of the grapes directly affects the developments of alcoholic fermentation and influences the final aromatic composition of the wines. The aim of this study was to determine the effect and efficiency of foliar applications of urea on the nitrogen composition of grapes. This study was carried out during 2023 vintage and in the Chenin vineyard located in Estacion Experimental Mendoza (Argentina). Three urea concentrations 3, 6 and 9 Kg N/ha (C1, C2, and C3, respectively) and control (T) were applied in this vineyard at veraison.

Influence of polysaccharide extracts from wine by-products on the volatile composition of sparkling white wines

In the production of sparkling wines, during the second fermentation, mannoproteins are released by yeast autolysis, which affect the quality of the wines. The effect of mannoproteins has been extensively studied, and may affect aroma and foam quality. However, there are no studies on the effect of other polysaccharides such as those from grapes. Considering the large production of waste from the wine industry, it was proposed to obtain polysaccharide-rich extracts from some of these by-products[1].

Identification of several glycosidic aroma precursors in six varieties of winemaking grapes and assessment of their aroma potential by acid hydrolysis

In winemaking grapes, it is known that most aroma compounds are present as non-volatile precursors, such as glycosidic precursors. In fact, there is strong evidence supporting the connection between the content of aroma precursors and the aromatic quality of wine [1]. Acid hydrolysis is preferred to reveal the aroma potential of winemaking grapes, as it predicts more accurately the chemical rearrangements occurring during fermentation in acidic environments [2]. In this study, a method involving a fast fermentation followed by acid hydrolysis at 75ºC was used to evaluate the accumulation of aroma compounds over time in fractions obtained from six different varieties of winemaking grapes.

Cumulative effect of deficit irrigation and salinity on vine responses

Climate change is increasing water needs in most of the wine growing regions while reducing the availability and quality of water resources for irrigation. In this context, the sustainability of Mediterranean viticulture depends on grapevine responses to the combinations of water and salt stress. With this aim, this work studies the effects of deficit irrigation and salinity on the physiology of the Tempranillo cultivar (Vitis vinifera L.) grafted onto a drought and salinity tolerant rootstock (1103 Paulsen).