terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effect of drought on grapevine wood fungal pathogen communities using a metatranscriptomics approach

Effect of drought on grapevine wood fungal pathogen communities using a metatranscriptomics approach

Abstract

Crops are facing increasing biotic and abiotic stress pressures due to global changes. However, trade-off mechanisms between these stresses and the underlying physiological processes are still poorly understood, especially in perennial crop species. To better understand these trade-offs, we studied the effect of drought on grapevine (Vitis vinifera) physiology and esca-related wood fungal communities. Esca is a vascular disease caused by a community of wood-infecting pathogenic fungi, and characterized by trunk necrosis, leaf scorch symptoms, yield losses, and mortality. This grapevine disease lead to xylem hydraulic failure and leaf symptoms are inhibited by severe drought. To characterize the molecular processes underlying the interactions between drought and esca, we conducted two experiments on 30-year-old Sauvignon blanc vines, expressing or not esca leaf symptoms, and subjected or not to drought stress under controlled conditions. Sapwood samples from the trunks were used to perform community-level transcriptomics analyses. Results will be also analyzed in the light of others metabolomics and ecophysiological data acquired on wood and leaf samples. Such an integrative approach will provide new insights into the understanding of grapevine/esca pathosystem under drought conditions, in terms of physiological and functional responses in either host and pathogens.

Acknowledgements: The authors thanks Université de Bordeaux for funding the GPR (Great Research Project) Bordeaux Plant Science.

DOI:

Publication date: October 6, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Marie Chambard1,2, Ninon Dell’Acqua1, Giovanni Bortolami1, Dario Cantù3, Nathalie Ferrer1, Gregory A. Gambetta4, Marie Foulongne-Oriol2, Chloé E. L. Delmas1

1 INRAE Bordeaux Nouvelle Aquitaine, UMR 1065 SAVE, 71 avenue Edouard Bourlaux – CS 20032, 33882 Villenave d’Ornon cedex
2 INRAE Bordeaux Nouvelle Aquitaine, UR 1264 MycSA, 71 avenue Edouard Bourlaux – CS 20032, 33882 Villenave d’Ornon cedex

3 Department of Viticulture and Enology, University of California, Davis, One Shields Ave, Davis, CA 95618, USA
4 INRAE Bordeaux Nouvelle Aquitaine, UMR 1287 EGFV, 71 avenue Edouard Bourlaux – CS 20032, 33882 Villenave d’Ornon cedex

Contact the author*

Keywords

Vitis vinifera Sauvignon Blanc, esca disease, drought, metatranscriptomics, physiology

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Impact of climate on berry weight dynamics of a wide range of Vitis vinifera cultivars 

In order to study the impact of climate change on Bordeaux grape varieties and to assess the behavior of candidate grape varieties potentially better adapted to the new climatic conditions, an experimental vineyard composed of 52 grape varieties was planted in 2009 at the INRAE Bordeaux Aquitaine center[1]. Among the many parameters studied since 2012, berry weight for each variety was measured weekly from mid-veraison to maturity, with four independent replicates. The kinetics obtained allowed to study berry growth, a key parameter in grape composition and yield.

Wine racking in the winery and the use of inerting gases

The O2 uptake in the different winemaking processes is generally considered to be negative for the sensory characteristics of white and rosé wines. Wine racking is a critical point of O2 uptake, as the large surface area of the wine exposed during this operation and the inability to maintain an effective inert gas blanket over it.
The objective was to study O2 uptake during the racking of a model wine without using inert gases and to compare it with the purging of the destination tank with different inert gases.

The 1000 grapevine genomes project: Cataloguing Australia’s grapevine germplasm

Grapevine cultivars can be unequivocally typed by both physical differences (ampelography) and genetic tests. However due to their very similar characteristics, the identification of clones within a cultivar relies on the accurate tracing of supply records to the point of origin. Such records are not always available or reliable, particularly for older accessions. Whole genome sequencing (WGS) provides the most highly detailed methodology for defining grapevine cultivars and more importantly, this can be extended to differentiating clones within those cultivars.

Survey of pesticide residues in vineyard soils from the Denomination of Origin Ribeiro

Vineyards from mild temperature, high humidity locations receive often treatments with fungicides to prevent damages produced by fungi responsible for mildium, oidium and botrytis infections. In addition, insecticides are also applied to vineyards to fight again pests, which affect directly, or indirectly (as vectors of different diseases), their productivity. A fraction of the above compounds reaches the soil of vineyards, either during application, or when released from the canopy of vines due to rain-wash-off. Thereafter, depending on soil conditions (pH, organic matter) and environmental variables (regimen of rain, slope of vineyards), they might persist in this compartment, be degraded and/or transferred to water masses, modifying the biodiversity of soils and/or affecting the quality of water reservoirs.

Assessment of plant water consumption rates under climate change conditions through an automated modular platform

The impact of climate change is noticeable in the present weather, making water scarcity the most immediate mediator reducing the performance and viability of crops, including grapevine (Vitis vinifera L.). The present study developed a system (hardware, firmware, and software) for the determination of plant water use through changes in weight through a period. The aim is to measure the differences in grapevine water consumption in response to climate change (+4oC and 700 ppm) under controlled conditions. The results reveal a correlation between daily plant consumption rates and reference evapotranspiration (ETo).