terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effect of drought on grapevine wood fungal pathogen communities using a metatranscriptomics approach

Effect of drought on grapevine wood fungal pathogen communities using a metatranscriptomics approach

Abstract

Crops are facing increasing biotic and abiotic stress pressures due to global changes. However, trade-off mechanisms between these stresses and the underlying physiological processes are still poorly understood, especially in perennial crop species. To better understand these trade-offs, we studied the effect of drought on grapevine (Vitis vinifera) physiology and esca-related wood fungal communities. Esca is a vascular disease caused by a community of wood-infecting pathogenic fungi, and characterized by trunk necrosis, leaf scorch symptoms, yield losses, and mortality. This grapevine disease lead to xylem hydraulic failure and leaf symptoms are inhibited by severe drought. To characterize the molecular processes underlying the interactions between drought and esca, we conducted two experiments on 30-year-old Sauvignon blanc vines, expressing or not esca leaf symptoms, and subjected or not to drought stress under controlled conditions. Sapwood samples from the trunks were used to perform community-level transcriptomics analyses. Results will be also analyzed in the light of others metabolomics and ecophysiological data acquired on wood and leaf samples. Such an integrative approach will provide new insights into the understanding of grapevine/esca pathosystem under drought conditions, in terms of physiological and functional responses in either host and pathogens.

Acknowledgements: The authors thanks Université de Bordeaux for funding the GPR (Great Research Project) Bordeaux Plant Science.

DOI:

Publication date: October 6, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Marie Chambard1,2, Ninon Dell’Acqua1, Giovanni Bortolami1, Dario Cantù3, Nathalie Ferrer1, Gregory A. Gambetta4, Marie Foulongne-Oriol2, Chloé E. L. Delmas1

1 INRAE Bordeaux Nouvelle Aquitaine, UMR 1065 SAVE, 71 avenue Edouard Bourlaux – CS 20032, 33882 Villenave d’Ornon cedex
2 INRAE Bordeaux Nouvelle Aquitaine, UR 1264 MycSA, 71 avenue Edouard Bourlaux – CS 20032, 33882 Villenave d’Ornon cedex

3 Department of Viticulture and Enology, University of California, Davis, One Shields Ave, Davis, CA 95618, USA
4 INRAE Bordeaux Nouvelle Aquitaine, UMR 1287 EGFV, 71 avenue Edouard Bourlaux – CS 20032, 33882 Villenave d’Ornon cedex

Contact the author*

Keywords

Vitis vinifera Sauvignon Blanc, esca disease, drought, metatranscriptomics, physiology

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Symbiotic microorganisms application in vineyards: impacts on grapevine performance and microbiome

Microorganism-based inoculants have been suggested as a viable solution to mitigate the adverse effects of climate change on viticulture. However, the actual effectiveness of these inoculants when applied under field conditions remains a challenge, and their effects on the existing soil microbiota are still uncertain. This study investigates the impact of arbuscular mycorrhizal fungi inoculation on grapevine performance and microbiome. The study was conducted in a vineyard of Callet cultivar in Binissalem, Mallorca, Spain. Two different treatments were applied: control and inoculation with commercial mycorrhizae complex of Rhizoglomus irregulare applied to plants through irrigation.

Bioprotection of grape must by Metschnikowia sp.: genericity and mechanism

The market trend heads to food products with less chemical inputs, including in oenology. During the winemaking process, sulfites are commonly use to avoid microbiological contamination and stabilization of the wine thanks to its antimicrobial and antioxidant activities. Nevertheless, this use is not without consequences on human health and environment, leading for example to allergic reaction and pollution. A biological alternative to these sulfites has emerges: the bioprotection.

Phenolic extraction and dissolved oxygen concentration during red wines fermentations with Airmixig M.I.™

During red wine fermentation, the extraction of phenolics compounds and sufficient oxygen provision are critical for wine quality [1,2]. In this trial, we aimed at evaluating the kinetics of phenolic extraction and dissolved oxygen during red wine fermentations using the airmixing system. Twenty lots of red grape musts were fermented in 300.000 L tanks, equipped with airmixing, using two injection regimes (i.e., high and low intensity, and high and low daily frequency). An oxygen analyzer was introduced into the tanks in order to record the concentration of dissolved oxygen over time.

Effect of different plant fibers on the elimination of undesirable compounds in red wine. Correlation with its polysaccharide composition

The presence of undesirable compounds in wines, such as OTA, biogenic amines and pesticides residues, affects wine quality and can cause health problems for the consumer. The main tool that a winemaker has to reduce their content in the wine is fining. However, some of the fining agents commonly used in the winery can cause allergies or even increase the protein content in the wine, increasing the turbidity. To avoid these problems, the use of plant fibers may be an alternative, such as those from grape pomace[1] or other plant origins.

Differences in metabolism among species and hybrids of the genus Saccharomyces during wine fermentation unveiled by multi-omic analysis 

Yeast species S. cerevisiae, S. uvarum, S. kudriavzevii and their hybrids present clear metabolic differences, even when we compared S. cerevisiae wine versus wild strain. These species and hybrids produced significantly higher amounts of glycerol, organic acids, 2,3-butanediol, and 2-phenyl ethanol and a reduction of the ethanol yield, properties very interesting in the sector to deal with climate change effects. To understand the existing differences, we have used several omics techniques to analyze the dynamics of the (intra- and extracellular) metabolomes and/or transcriptomes of representative strains of S. cerevisiae, S. uvarum, S. kudriavzevii, and hybrids.