terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effect of drought on grapevine wood fungal pathogen communities using a metatranscriptomics approach

Effect of drought on grapevine wood fungal pathogen communities using a metatranscriptomics approach

Abstract

Crops are facing increasing biotic and abiotic stress pressures due to global changes. However, trade-off mechanisms between these stresses and the underlying physiological processes are still poorly understood, especially in perennial crop species. To better understand these trade-offs, we studied the effect of drought on grapevine (Vitis vinifera) physiology and esca-related wood fungal communities. Esca is a vascular disease caused by a community of wood-infecting pathogenic fungi, and characterized by trunk necrosis, leaf scorch symptoms, yield losses, and mortality. This grapevine disease lead to xylem hydraulic failure and leaf symptoms are inhibited by severe drought. To characterize the molecular processes underlying the interactions between drought and esca, we conducted two experiments on 30-year-old Sauvignon blanc vines, expressing or not esca leaf symptoms, and subjected or not to drought stress under controlled conditions. Sapwood samples from the trunks were used to perform community-level transcriptomics analyses. Results will be also analyzed in the light of others metabolomics and ecophysiological data acquired on wood and leaf samples. Such an integrative approach will provide new insights into the understanding of grapevine/esca pathosystem under drought conditions, in terms of physiological and functional responses in either host and pathogens.

Acknowledgements: The authors thanks Université de Bordeaux for funding the GPR (Great Research Project) Bordeaux Plant Science.

DOI:

Publication date: October 6, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Marie Chambard1,2, Ninon Dell’Acqua1, Giovanni Bortolami1, Dario Cantù3, Nathalie Ferrer1, Gregory A. Gambetta4, Marie Foulongne-Oriol2, Chloé E. L. Delmas1

1 INRAE Bordeaux Nouvelle Aquitaine, UMR 1065 SAVE, 71 avenue Edouard Bourlaux – CS 20032, 33882 Villenave d’Ornon cedex
2 INRAE Bordeaux Nouvelle Aquitaine, UR 1264 MycSA, 71 avenue Edouard Bourlaux – CS 20032, 33882 Villenave d’Ornon cedex

3 Department of Viticulture and Enology, University of California, Davis, One Shields Ave, Davis, CA 95618, USA
4 INRAE Bordeaux Nouvelle Aquitaine, UMR 1287 EGFV, 71 avenue Edouard Bourlaux – CS 20032, 33882 Villenave d’Ornon cedex

Contact the author*

Keywords

Vitis vinifera Sauvignon Blanc, esca disease, drought, metatranscriptomics, physiology

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

The tolerance of grapevine rootstocks to water deficit is related to root morphology and xylem anatomy traits 

Climate change is altering water balances, thereby compromising water availability for crops. In grapevine, the strategic selection of genotypes more tolerant to soil water deficit can improve the resilience of the vineyard under this scenario. Previous studies demonstrated that root anatomical and morphological traits determine vine performance under water deficit conditions. Therefore, 13 ungrafted rootstock genotypes, 6 commercial (420 A, 41 B, Evex 13-5, Fercal, 140 Ru y 110 R), and 7 from new breeding programs (RG2, RG3, RG4, RG7, RG8, RG9 and RM2) were evaluated in pots during 2021 and 2022.

Sustainable management of grapevine trunk diseases

Grapevine trunk diseases (GTD) occur wherever grapes are grown and are considered the main biotic factor reducing yields and shortening vineyards’ lifespan. Currently, no product is available to eradicate GTD once grapevines are infected. Therefore, prophylactic strategies based on pruning wound protection and ‘remedial surgery’, the only eradication method based on the elimination of infected wood and renewal of the vine by means of new canes or suckers, are the only effective strategies available. The Canadian grape and wine industry focusses on a sustainable production and thus, looking for alternatives to chemicals for disease management is a top priority.

Stomatal abundance in grapevine: developmental genes, genotypic variation, and physiology

Grapevine cultivation is threatened by the global warming, which combines high temperatures and reduced rainfall, impacting in wine quality and even plant survival. Breeding for varieties resilient to these challenges must address plant traits such as tolerance to supraoptimal temperatures and optimized water use efficiency while minimizing productivity and quality losses. Stomatal abundance (SA) determines the maximum leaf potential for transpiration and thus water loss and cooling. Since SA results from a developmental process during leaf emergence and growth, knowledge on the genetic control of this process would provide specific targets for modification.

Phenolic composition and chromatic characteristics of blends of cv. Tempranillo wines from vines grown with different viticultural techniques in a semi-arid area

The quality and color stability of red wines are directly related to content and distribution of phenolic compounds. However, the climate change produces the asynchrony between the dates of technological and maturity of grapes. The crop-forcing technique (CF) restores the coupling between phenolic and technological ripeness while limits vineyard yields. Blending of wines is frequently used to equilibriate composition of wines and to increase their stability, color and quality. The aim of the present work is to study the phenolic composition and color of wine blends made with FW (wines from vines subjected to CF) and CW (wines for vines under the usual cultivation practices).

Advancing grapevine science through genomic research

The seminar will examine the complexities and prospects of genomic research on Vitis species, characterize by exceptionally high heterozygosity and common interspecific gene flow. The seminar will showcase case studies highlighting the critical role of diploid genome references in grape research, specifically in areas such as aroma development, disease resistance, and domestication traits. It will also address the emerging focus on pangenomes within the Vitis genus, particularly in the context of genetic studies on naturally interbreeding populations.