terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effect of drought on grapevine wood fungal pathogen communities using a metatranscriptomics approach

Effect of drought on grapevine wood fungal pathogen communities using a metatranscriptomics approach

Abstract

Crops are facing increasing biotic and abiotic stress pressures due to global changes. However, trade-off mechanisms between these stresses and the underlying physiological processes are still poorly understood, especially in perennial crop species. To better understand these trade-offs, we studied the effect of drought on grapevine (Vitis vinifera) physiology and esca-related wood fungal communities. Esca is a vascular disease caused by a community of wood-infecting pathogenic fungi, and characterized by trunk necrosis, leaf scorch symptoms, yield losses, and mortality. This grapevine disease lead to xylem hydraulic failure and leaf symptoms are inhibited by severe drought. To characterize the molecular processes underlying the interactions between drought and esca, we conducted two experiments on 30-year-old Sauvignon blanc vines, expressing or not esca leaf symptoms, and subjected or not to drought stress under controlled conditions. Sapwood samples from the trunks were used to perform community-level transcriptomics analyses. Results will be also analyzed in the light of others metabolomics and ecophysiological data acquired on wood and leaf samples. Such an integrative approach will provide new insights into the understanding of grapevine/esca pathosystem under drought conditions, in terms of physiological and functional responses in either host and pathogens.

Acknowledgements: The authors thanks Université de Bordeaux for funding the GPR (Great Research Project) Bordeaux Plant Science.

DOI:

Publication date: October 6, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Marie Chambard1,2, Ninon Dell’Acqua1, Giovanni Bortolami1, Dario Cantù3, Nathalie Ferrer1, Gregory A. Gambetta4, Marie Foulongne-Oriol2, Chloé E. L. Delmas1

1 INRAE Bordeaux Nouvelle Aquitaine, UMR 1065 SAVE, 71 avenue Edouard Bourlaux – CS 20032, 33882 Villenave d’Ornon cedex
2 INRAE Bordeaux Nouvelle Aquitaine, UR 1264 MycSA, 71 avenue Edouard Bourlaux – CS 20032, 33882 Villenave d’Ornon cedex

3 Department of Viticulture and Enology, University of California, Davis, One Shields Ave, Davis, CA 95618, USA
4 INRAE Bordeaux Nouvelle Aquitaine, UMR 1287 EGFV, 71 avenue Edouard Bourlaux – CS 20032, 33882 Villenave d’Ornon cedex

Contact the author*

Keywords

Vitis vinifera Sauvignon Blanc, esca disease, drought, metatranscriptomics, physiology

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Towards the understanding of wine distillation in the production of brandy de Jerez. Chemical and sensory characterization of two distillation methods: continuous and batch distillation

Brandy de Jerez (BJ) is a spirit drink made exclusively from spirits and wine distillates and is characterized by the use of casks for aging that previously contained Sherries. The quality and sensory complexity of BJ depend on the raw materials and some factors: grape variety, conditions during processing the wine and its distillation, as well as the aging in the cask. Therefore, the original compounds of the grapes from which it comes are of great interest being in most cases the Airén variety. Their relationship with the quality of the musts and the wines obtained from them has been studied (1) and varies each year of harvest depending on the weather conditions (2).

Grapevine cane pruning extract enhances plant physiological capacities and decreases phenolic accumulation in canes and leaves 

Vine cane extracts are a valuable byproduct due to their rich content of polyphenols, vitamins, and other beneficial compounds, which can affect and benefit the vine and the grapes. This study aims to evaluate the response of grapevine plants to irrigation with water supplemented with a vine cane extract, both at physiology response and phenolic composition in different parts of the plant (root, trunk, shoot, leaf, and berry).
Cane extract was obtained by macerating crushed pruning residues with warm water (5:1) and pectolytic enzymes. Two-year-old potted plants were irrigated with water (Control) while others were irrigated with cane extracts, either at 1:4 (w/v, cane extract/water; T 1:4) or at 1:8 (w/v, cane extract/water; T 1:8).

Teinturier grapes: Valorization as a source of high-value compounds for the Chilean food industry

The agri-food industry is constantly searching for ingredients of high functional value, healthy and of natural origin. One species of particular interest is Vitis vinifera, due to its recognized antioxidant potential. Among the grape varieties, one group possesses these antioxidant compounds not only in the skin, but also in its pulp: Teinturier. The red grape has traditionally been used for color correction purposes in winemaking, however, its high antioxidant content transforms it into a raw material of high potential for new formulations of ingredients and foods for the health and wellness market.

Predicting provenance and grapevine cultivar implementing machine learning on vineyard soil microbiome data: implications in grapevine breeding

The plant rhizosphere microbial communities are an essential component of plant microbiota, which is crucial for sustaining the production of healthy crops. The main drivers of the composition of such communities are the growing environment and the planted genotype. Recent viticulture studies focus on understanding the effects of these factors on soil microbial composition since microbial biodiversity is an important determinant of plant phenotype, and of wine’s organoleptic properties. Microbial biodiversity of different wine regions, for instance, is an important determinant of wine terroir.

Exploring intra-vineyard variability with sensor- and molecular-based approaches 

The application of remote and proximal sensing is a fast and efficient method to monitor grapevine vegetative and physiological parameters and is considered valuable to derive information on associated yield and quality traits in the vineyard. Further details can be obtained by the application of molecular analysis at the gene expression level aiming at elucidating how pathways controlling the formation of different grape quality traits are influenced by spatial variability. This work aims at evaluating intra-vineyard variability in grape composition at harvest and at comparing this with remotely sensed canopy vegetation data and molecular-based approaches.