terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Analysis of volatile composition of interaction between the pathogen E. necator and two grapevine varieties

Analysis of volatile composition of interaction between the pathogen E. necator and two grapevine varieties

Abstract

Volatile organic compounds (VOCs) are emitted by nearly all plant organs of the plants, including leaves. They play a key role in the communication with other organisms, therefore they are involved in plant defence against phytopathogens. In this study VOCs from grapevine leaves of two varieties of Vitis vinifera infected by Erysiphe necator were analysed. The varieties were selected based on their susceptibility to pathogen, Kishmish Vatkana has the Ren1 resistance gene and Zamarrica showed high susceptibility in previous trials. Three plants per variety were inoculated with a conidial solution (>105 conidias/ml). Leaves were extracted by headspace solid phase microextraction and analysed by GC-MS at 1 day post inoculation. More than 70 compounds were annotated, leaf extracts of Kishmish were richer in compounds than Zamarrica. In respond to pathogen, the accumulation of aldehydes, mainly 2-pentenal, and ethyl esters in Kismish were scored. Zamarrica had a greater number of compounds that modified their concentrations by the interaction. When compared between treated leaves of both varieties, differences in terpenes and aldehydes were found. These results show that VOCs may play an important role in the response to pathogen attack, but further transcriptomic analyses are required to know the possible effects of VOCs on defence system, mainly in the activation of resistance mechanisms.

Acknowledgements: Financial support from Ministerio de Ciencia Innovación y Universidades RTI2018-101085-R-C32.

DOI:

Publication date: October 6, 2023

Issue: ICGWS 2023

Type: Poster

Authors

María M. Hernández1*, Carolina Castillo Rio2, Sara Isabel Blanco González2, Cristina M. Menéndez1

1 Instituto de Ciencias de la Vid y el Vino (ICVV), Finca La Grajera, Carretera de Burgos km 6, 26007, Logroño
2 Dpto. de Agricultura y Alimentación, Universidad de La Rioja, C/Madre de Dios 51, 26006, Logroño

Contact the author*

Keywords

powdery mildew, plant defence, interaction plant – pathogen, secondary metabolites

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Cover crop management and termination timing have different effects on the maturation and water potentials of Glera (Vitis vinifera L.) in Friuli-Venezia Giulia

Inter-row soil tillage in vineyards, stimulates vigor and production due to the absence of competition for water and nutrients, however negatively affects organic matter content, soil erosion, and compaction, resulting in reduced fertility. In this study, we investigated the effects of different cover crop management approaches, including cultivation type and termination timing, on the physiological and productive responses of a Glera vineyard.
The experimental trial was conducted in Precenicco (UD) from 2019 to 2021. A commercial mixture for autumn cover cropping was sown in alternating rows, and the sowing pattern was changed each year.

Effects of different soil types and soil management on greenhouse gas emissions 

Soil is important in the carbon cycle and the dynamics of greenhouse gases (CO2, CH4 and N2O). Key soil characteristics, such as organic matter content, texture, structure, pH and microbial activity, play a determining role in GHG emissions[1]. The objective of the study is to delimit different types of soil, with different soil management and to be able to verify the differences in CO2, CH4 and N2O emissions. The study was carried out in a vineyard of Bodegas Campo Viejo in Logroño (La Rioja), whose plant material is Vitis vinifera L. cv. Tempranillo.

Effect of riboflavin on the longevity of white and rosé wines

Light is a fundamental part at sales points which influences in the conservation of wines, particularly in those that are sold in transparent glass bottles such as rosé wines and increasingly white wines. The photochemical effect known as “light-struck taste” can cause changes in the aromatic characteristics of the wine. This “light-struck taste” is due to reactions triggered by the photochemical sensitivity of riboflavin (RBF).

Distribution and sensory impact of new oak wood-derived compounds in wines

Despite the numerous research studies carried out in recent years, the study of wine aroma remains of great interest due to its complexity. Wine maturation in oak barrels is described as an important step in the production of quality wines. In fact, oak wood develops several aromatic nuances through its toasting which can be released into the wine. A great deal of work has been performed in order to identify the wood-derived volatile compounds that contribute to wine aroma (e.g., whisky-lactone, maltol, eugenol, guaiacol, vanillin).

Glucosidase and esterase salivary activities and their involvement in consumer’s wine sensory perception and liking

Wine flavour is the integration of distinct physiologically defined sensory systems that combine taste, aroma and trigeminal sensations, and it is a key determinant factor for the acceptance of wine by consumers. Volatile compounds, are important contributors to wine flavour, specially to aroma. These small and low-boiling point compounds are easily released into the air allowing to enter and move within the nasal or oral cavities where they can bind the olfactory receptors. Additionally, wine also contains aroma precursors, which are non-volatile compounds, but that can be broken down releasing volatile odorants. During wine tasting, all these chemicals (volatiles and non-volatiles) can be submitted to the action of salivary enzymes.