terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Analysis of volatile composition of interaction between the pathogen E. necator and two grapevine varieties

Analysis of volatile composition of interaction between the pathogen E. necator and two grapevine varieties

Abstract

Volatile organic compounds (VOCs) are emitted by nearly all plant organs of the plants, including leaves. They play a key role in the communication with other organisms, therefore they are involved in plant defence against phytopathogens. In this study VOCs from grapevine leaves of two varieties of Vitis vinifera infected by Erysiphe necator were analysed. The varieties were selected based on their susceptibility to pathogen, Kishmish Vatkana has the Ren1 resistance gene and Zamarrica showed high susceptibility in previous trials. Three plants per variety were inoculated with a conidial solution (>105 conidias/ml). Leaves were extracted by headspace solid phase microextraction and analysed by GC-MS at 1 day post inoculation. More than 70 compounds were annotated, leaf extracts of Kishmish were richer in compounds than Zamarrica. In respond to pathogen, the accumulation of aldehydes, mainly 2-pentenal, and ethyl esters in Kismish were scored. Zamarrica had a greater number of compounds that modified their concentrations by the interaction. When compared between treated leaves of both varieties, differences in terpenes and aldehydes were found. These results show that VOCs may play an important role in the response to pathogen attack, but further transcriptomic analyses are required to know the possible effects of VOCs on defence system, mainly in the activation of resistance mechanisms.

Acknowledgements: Financial support from Ministerio de Ciencia Innovación y Universidades RTI2018-101085-R-C32.

DOI:

Publication date: October 6, 2023

Issue: ICGWS 2023

Type: Poster

Authors

María M. Hernández1*, Carolina Castillo Rio2, Sara Isabel Blanco González2, Cristina M. Menéndez1

1 Instituto de Ciencias de la Vid y el Vino (ICVV), Finca La Grajera, Carretera de Burgos km 6, 26007, Logroño
2 Dpto. de Agricultura y Alimentación, Universidad de La Rioja, C/Madre de Dios 51, 26006, Logroño

Contact the author*

Keywords

powdery mildew, plant defence, interaction plant – pathogen, secondary metabolites

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

How are canned wine drinkers perceived? An investigation involving Swiss nationals and different scenarios of outdoor leisure activities

This study examines how people who consume wine in cans are perceived in terms of their basic personality characteristics, helps understand the role of cultural background on people’s perception, and verify the role played by the consumption context on the perception. Our hypothesis is that prejudice and negative attitudes towards wine in cans might exert a negative effect on the evaluation of people who consume canned wine. To evaluate this hypothesis, the consumption of wine in cans was evoked in four different contexts of use during outdoor leisure activity (beach resort, ski resort, desert safari, and party). In order to examine the effect of culture on subject’s response we use participants from Switzerland, a country where three different cultures, associated with three different languages, cohabit.

Early defoliation positively enhances bioactive composition of berries with no effect on cuticle characteristics

Leaf removal in the fruit-zone has been employed to improve cluster light exposure and ventilation and therefore increase metabolite accumulation and reduce botrytis incidence in berries. When applied before flowering (early defoliation – ED), it can also decrease cluster compactness and regulate yield in high-yielding varieties. This study aimed to evaluate the impact of ED on the physiology and metabolism of Aragonez (syn. Tempranillo) berries along the ripening period. The experiment was set up in 2013 at a commercial vineyard located in the Lisbon winegrowing region.

Optimization of the acquisition of NIR spectrum in grape must and wine 

The characterization of chemical compounds related with quality of grape must and wine is relevant for the viticulture and enology fields. Analytical methods used for these analyses require expensive instrumentation as well as a long sample preparation processes and the use of chemical solvents. On the other hand, near-infrared (NIR) spectroscopy technique is a simple, fast and non-destructive method for the detection of chemical composition showing a fingerprint of the sample. It has been reported the potential of NIR spectroscopy to measure some enological parameters such as alcohol content, pH, organic acids, glycerol, reducing sugars and phenolic compounds.

Phenolic composition and chromatic characteristics of blends of cv. Tempranillo wines from vines grown with different viticultural techniques in a semi-arid area

The quality and color stability of red wines are directly related to content and distribution of phenolic compounds. However, the climate change produces the asynchrony between the dates of technological and maturity of grapes. The crop-forcing technique (CF) restores the coupling between phenolic and technological ripeness while limits vineyard yields. Blending of wines is frequently used to equilibriate composition of wines and to increase their stability, color and quality. The aim of the present work is to study the phenolic composition and color of wine blends made with FW (wines from vines subjected to CF) and CW (wines for vines under the usual cultivation practices).

The generation of suspended cell wall material may limit the effect of ultrasound in some varieties

The disruptive effect exerted by high-power ultrasound (US) on plant cell walls, natural barriers to the diffusion of compounds of interest during the maceration of red wines, is established as the reason behind the chromatic improvement that its treatment causes. However, sometimes this improvement is not observed, especially with short maceration times. The presence of a high quantity of suspended cell wall material, which formation is favored by the sonication, could be the cause of this lack of positive results since this cell wall material has a high affinity for phenolic compounds.