terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Analysis of volatile composition of interaction between the pathogen E. necator and two grapevine varieties

Analysis of volatile composition of interaction between the pathogen E. necator and two grapevine varieties

Abstract

Volatile organic compounds (VOCs) are emitted by nearly all plant organs of the plants, including leaves. They play a key role in the communication with other organisms, therefore they are involved in plant defence against phytopathogens. In this study VOCs from grapevine leaves of two varieties of Vitis vinifera infected by Erysiphe necator were analysed. The varieties were selected based on their susceptibility to pathogen, Kishmish Vatkana has the Ren1 resistance gene and Zamarrica showed high susceptibility in previous trials. Three plants per variety were inoculated with a conidial solution (>105 conidias/ml). Leaves were extracted by headspace solid phase microextraction and analysed by GC-MS at 1 day post inoculation. More than 70 compounds were annotated, leaf extracts of Kishmish were richer in compounds than Zamarrica. In respond to pathogen, the accumulation of aldehydes, mainly 2-pentenal, and ethyl esters in Kismish were scored. Zamarrica had a greater number of compounds that modified their concentrations by the interaction. When compared between treated leaves of both varieties, differences in terpenes and aldehydes were found. These results show that VOCs may play an important role in the response to pathogen attack, but further transcriptomic analyses are required to know the possible effects of VOCs on defence system, mainly in the activation of resistance mechanisms.

Acknowledgements: Financial support from Ministerio de Ciencia Innovación y Universidades RTI2018-101085-R-C32.

DOI:

Publication date: October 6, 2023

Issue: ICGWS 2023

Type: Poster

Authors

María M. Hernández1*, Carolina Castillo Rio2, Sara Isabel Blanco González2, Cristina M. Menéndez1

1 Instituto de Ciencias de la Vid y el Vino (ICVV), Finca La Grajera, Carretera de Burgos km 6, 26007, Logroño
2 Dpto. de Agricultura y Alimentación, Universidad de La Rioja, C/Madre de Dios 51, 26006, Logroño

Contact the author*

Keywords

powdery mildew, plant defence, interaction plant – pathogen, secondary metabolites

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Polysaccharide families of lyophilized extracts obtained from unfermented varietal grape pomaces

The recovery of bioactive compounds from grape and wine by-products is currently an important objective for revaluation and sustainability. Grape pomace is one of the main by-products and is a rich source of some bioactive compounds. The aim of this study was to evaluate the polysaccharide (PS) composition of extracts obtained from pomaces of different white and red grape varieties of Castilla y León. Grape pomaces were obtained after the pressing in the winemaking process.

Biotic and abiotic factors affecting physiological aspects underlying vegetative vigour in two commercial grapevine varieties

Grapevine vigour, defined as the propensity to assimilate, store and/or use non-structural sugars for allowing fast growth of shoots and producing large canopies[1], is crucial to optimize vineyard management. Recently, a model has been proposed for predicting the vigor of young grapevines through the measurement of the vegetative growth and physiological parameters, such as water status and gas exchange[2]. Our objectives were (1) to explore the influence of the association of two grapevine varieties (Tempranillo and Cabernet Sauvignon, grafted onto R110 rootstocks) with arbuscular mycorrhizal fungi (AMF) on the vegetative vigour of young plants; and (2) to assess the effect of environmental factors linked to climate change on the vegetative vigour of Cabernet Sauvignon.

Quantifying water use diversity across grapevine rootstock-scion combinations

Vines require proper light levels, temperature, and water availability, and climate change is modifying these factors, hampering yield and quality. Despite the large diversity of rootstocks, varieties, and clones, we still lack knowledge of their combined effects and potential role in a warmer and dryer future. Therefore, we aim to characterize some of the existing diversity of rootstocks and genotypes and their interaction at the eco-physiological level, combining stomatal conductance (gs) and chlorophyll a fluorescence analysis.

Extreme vintages affect grape varieties differently: a case study from a cool climate wine region

Eger wine region is located on the northern border of grapevine cultivation zone. In the cool climate, terroir selection is one of the foundations of quality wine making. However, climate change will have a significant impact on these high value-added vineyards. This study presents a case study from 2021 and 2022 with the investigation of three grape varieties (Kadarka, Syrah, Furmint). The experiment was conducted in a steep-sloped vineyard (Nagy-Eged hill) with a southern exposure.

Can yeast cells sense other yeasts beyond competition interactions?

The utilization of non-Saccharomyces yeasts in the wine industry has increased significantly in recent years. Alternative species need commonly be employed in combination with Saccharomyces cerevisiae to avoid stuck fermentation, or microbial spoilage. The employment of more than one yeast starter can lead to interactions between different species with an impact on the outcome of wine fermentation. Previous studies[1] demonstrated that S. cerevisiae elicits transcriptional responses with both shared and species-specific features in co-culture with other yeast species.