terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Analysis of volatile composition of interaction between the pathogen E. necator and two grapevine varieties

Analysis of volatile composition of interaction between the pathogen E. necator and two grapevine varieties

Abstract

Volatile organic compounds (VOCs) are emitted by nearly all plant organs of the plants, including leaves. They play a key role in the communication with other organisms, therefore they are involved in plant defence against phytopathogens. In this study VOCs from grapevine leaves of two varieties of Vitis vinifera infected by Erysiphe necator were analysed. The varieties were selected based on their susceptibility to pathogen, Kishmish Vatkana has the Ren1 resistance gene and Zamarrica showed high susceptibility in previous trials. Three plants per variety were inoculated with a conidial solution (>105 conidias/ml). Leaves were extracted by headspace solid phase microextraction and analysed by GC-MS at 1 day post inoculation. More than 70 compounds were annotated, leaf extracts of Kishmish were richer in compounds than Zamarrica. In respond to pathogen, the accumulation of aldehydes, mainly 2-pentenal, and ethyl esters in Kismish were scored. Zamarrica had a greater number of compounds that modified their concentrations by the interaction. When compared between treated leaves of both varieties, differences in terpenes and aldehydes were found. These results show that VOCs may play an important role in the response to pathogen attack, but further transcriptomic analyses are required to know the possible effects of VOCs on defence system, mainly in the activation of resistance mechanisms.

Acknowledgements: Financial support from Ministerio de Ciencia Innovación y Universidades RTI2018-101085-R-C32.

DOI:

Publication date: October 6, 2023

Issue: ICGWS 2023

Type: Poster

Authors

María M. Hernández1*, Carolina Castillo Rio2, Sara Isabel Blanco González2, Cristina M. Menéndez1

1 Instituto de Ciencias de la Vid y el Vino (ICVV), Finca La Grajera, Carretera de Burgos km 6, 26007, Logroño
2 Dpto. de Agricultura y Alimentación, Universidad de La Rioja, C/Madre de Dios 51, 26006, Logroño

Contact the author*

Keywords

powdery mildew, plant defence, interaction plant – pathogen, secondary metabolites

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

The tolerance of grapevine rootstocks to water deficit is related to root morphology and xylem anatomy traits 

Climate change is altering water balances, thereby compromising water availability for crops. In grapevine, the strategic selection of genotypes more tolerant to soil water deficit can improve the resilience of the vineyard under this scenario. Previous studies demonstrated that root anatomical and morphological traits determine vine performance under water deficit conditions. Therefore, 13 ungrafted rootstock genotypes, 6 commercial (420 A, 41 B, Evex 13-5, Fercal, 140 Ru y 110 R), and 7 from new breeding programs (RG2, RG3, RG4, RG7, RG8, RG9 and RM2) were evaluated in pots during 2021 and 2022.

Using climate services to project grapevine varietal adequation under climate change – application to cv. Tempranillo in the Douro wine region

Vine growth circumstances are becoming warmer and drier because of climate change. Higher temperatures advance ripening to a point in the season less conducive to the production of fine wine, while drought reduces yields (Van Leeuwen et al., 2019). Several wine-producing regions around the world have already recognized threats to their viticultural viability (Santos et al., 2020). An economical and cost-effective strategy for adaptation is the employment of late-ripening, drought-resistant plant material (varieties, clones, and rootstocks).

Moderate wine consumption – part of a balanced diet or a health risk?

Consumption of wine/alcoholic beverages remains a topic of great uncertainty and controversy worldwide. The term “no safe level” dominates the media communication and policy ever since population studies in 2018 [1,2] were published, which denied the existence of a J-curve and suggested that ANY consumption of an alcoholic beverage is harmful to health. The scientific evidence accumulated during the past decades about the health benefits of moderate wine consumption, were questioned and drinking guidelines considered to be too loose.

Exploring the genetic diversity of leaf flavonoids content in a set of Iberian grapevine cultivars: preliminary results

The use of grapevine genetic diversity is a way to mitigate the negative impacts of climate change on viticulture systems. Leaf epidermal flavonoids (including flavonols and anthocyanins) are involved in plant defense mechanisms against environmental stresses, like high temperatures or excessive solar radiation [1,2]. Among other factors, they modulate light absorption, which reduces photoinhibition processes in photosynthetic tissues [1]. Therefore, the identification of grapevine cultivars with an increased content on leaf epidermal flavonoids arises as a potential avenue to improve grapevine tolerance to some detrimental environmental stresses.

Volatilome in grapevine leaves is defined by the variety and modulated by mycorrhizal symbiosis

Volatile organic compounds (VOCs) constitute a diverse group of secondary metabolites key for the communication of plants with other organisms and for their adaptation to environmental and biotic stresses. The emission of these compounds through leaves is also affected by the interaction of plants with symbiotic microorganisms, arbuscular mycorrhizal fungi (AMF) among them [1]. Our objective was to know the concentration and profile of VOCs emitted by the leaves of two grapevine varieties (Tempranillo, T, and Cabernet Sauvignon, CS, grafted onto R110 rootstocks), inoculated or not with a consortium of five AMF (Rhizophagus irregularis, Funneliformis mosseae, Septoglomus deserticola, Claroideoglomus claroideum and C. etunicatum).