terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Application of antagonistic Metschnikowia strains against Botrytis cinerea in vineyards 

Application of antagonistic Metschnikowia strains against Botrytis cinerea in vineyards 

Abstract

Less and less chemical plant protection products are approved by the E U. Plant pathogenic fungi become increasingly resistant to the active ingredients that have been around for a long time. Besides, there is a valid demand for effective products that can be applied in organic cultivation.

We examined Metschnikowia strains under laboratory conditions in order to find effective strains against B. cinerea. The antimicrobial mechanism of these yeasts is based on the competition for the ferric ions from the environment. Metschnikowia cells release the pulcherriminic acid which chelates with Fe3+, forming the pigment pulcherrimin. The ability of M. pulcherrima of depleting Fe from the growth media is correlated with it’s ability to inhibit the growth of many microorganism. We compared the strains’ ability to produce pulcherrimin and their ability to inhibit different pathogenic fungi in laboratory conditions. Pulcherrimin production was also reported in the case of other yeast species. Krause et al. (2018) described four genes (PUL1-4) forming a PULcherrimin (PUL) gene cluster present in Kluyveromyces. lactis, K. aestuarii, M. fructicola and Zygotorulaspora mraki. We have also identified the four PULgenes in our effective M. pulcherrima strains.

We conducted field studies in three vintages using a specific M. pulcherrima strains. Based on our results, we can state that we have found an effective method to protect grape against B cinerea, which can be applied both in organic cultivation and also before harvest in conventional technology.

Acknowledgements: The authors would like to thank Anita Kovács, Ilona Szilágyi and Szilvia Struba for the profession technical assistance. This research was financed by the grant 2020-1.1.2-PIACI-KFI-2020-00130

References:

1) Krause D.J., Kominek J., Opulente D.A., Shen X.X., Zhou X., Langdon Q.K., DeVirgiliof J., Hulfachora A.B., Kurtzmanf C.P., Hittinger C.T. 2018. Functional and evolutionary characterization of a secondary metabolite gene cluster in budding yeasts. Proc. Natl. Acad. Sci. 115, 11030-11035. DOI: 10.1073/pnas. 1806268115

DOI:

Publication date: October 6, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Zoltán Kállai1*, Kinga Czentye1, Matthias Sipiczki1

1Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary

Contact the author*

Keywords

crop protection, bioprotection, antagonism, Metschnikowia, Botrytis cinerea 

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Pre-breeding for developing heat stress resilient grape varieties to ensure yield 

Climate change has numerous detrimental consequences and creates new challenges for viticulture around the world. Transitory or constant high temperatures frequently associated with an excess of sunlight (UV) can cause a variety of physiological disorders, such as sunburn. Diverse environmental factors and the plant’s response mechanisms to stress determine the symptoms. Grapevine berry sunburn leads to a drastic reduction in yield, and may eventually decline berry quality. Consequently, this poses a significant risk to the winegrowers.

INTEGRAPE guidelines and tools: an effort of COST Action CA17111

INTEGRAPE was a European interdisciplinary network for “data integration to maximize the power of omics for grapevine improvement” (CA17111, https://integrape.eu/), funded by the European COST Association from September 2018 to 2022. This Action successfully developed guidelines and tools for data management and promoted the best practices in grapevine omics studies with a holistic future vision of: “Imagine having all data on grapevine accessible in a single place”.

Culturable microbial communities associated with the grapevine soil in vineyards of La Rioja, Spain

The definition of soil health is complex due to the lack of agreement on adequate indicators and to the high variability of global soils. Nevertheless, it has been widely used as synonymous of soil quality for more than one decade, and there is a consensus warning of scientists that soil quality and biodiversity loss are occurring due to the traditional intensive agricultural practices.
In this work we monitored a set of soil parameters, both physicochemical and microbiological, in an experimental vineyard under three different management and land use systems: a) addition of external organic matter (EOM) to tilled soil; b) no tillage and plant cover between grapevine rows, and c) grapevines planted in rows running down the slope and tilled soil.

Metabolomic profiling of heat-stressed grape berries 

The projected rise in mean air temperatures together with the frequency, intensity, and length of heat waves in many wine-growing regions worldwide will deeply impact grape berry development and quality. Several studies have been conducted and a large set of molecular data was produced to better understand the impact of high temperatures on grape berry development and metabolism[1]. According to these data, it is highly likely that the metabolomic dynamics could be strongly modulated by heat stress (HS).

REGAVID a decision tool to deficit irrigation in a temperate climate (DO Monterrei – Spain)

In temperate climates, such as in the North of Spain, the use of irrigation in the vineyard has not been required, due to the usual rainfall from June to August. In some large vineyards, irrigation management has been carried out, based on occasional support irrigation, or for the application of nutrients (fertigation). Currently it is necessary to implement decision support models to manage irrigation water in real time and avoid misuse of a scarce resource. Moreover, quality standards must be achieved, as in the previous rainfed viticulture.