terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Application of antagonistic Metschnikowia strains against Botrytis cinerea in vineyards 

Application of antagonistic Metschnikowia strains against Botrytis cinerea in vineyards 

Abstract

Less and less chemical plant protection products are approved by the E U. Plant pathogenic fungi become increasingly resistant to the active ingredients that have been around for a long time. Besides, there is a valid demand for effective products that can be applied in organic cultivation.

We examined Metschnikowia strains under laboratory conditions in order to find effective strains against B. cinerea. The antimicrobial mechanism of these yeasts is based on the competition for the ferric ions from the environment. Metschnikowia cells release the pulcherriminic acid which chelates with Fe3+, forming the pigment pulcherrimin. The ability of M. pulcherrima of depleting Fe from the growth media is correlated with it’s ability to inhibit the growth of many microorganism. We compared the strains’ ability to produce pulcherrimin and their ability to inhibit different pathogenic fungi in laboratory conditions. Pulcherrimin production was also reported in the case of other yeast species. Krause et al. (2018) described four genes (PUL1-4) forming a PULcherrimin (PUL) gene cluster present in Kluyveromyces. lactis, K. aestuarii, M. fructicola and Zygotorulaspora mraki. We have also identified the four PULgenes in our effective M. pulcherrima strains.

We conducted field studies in three vintages using a specific M. pulcherrima strains. Based on our results, we can state that we have found an effective method to protect grape against B cinerea, which can be applied both in organic cultivation and also before harvest in conventional technology.

Acknowledgements: The authors would like to thank Anita Kovács, Ilona Szilágyi and Szilvia Struba for the profession technical assistance. This research was financed by the grant 2020-1.1.2-PIACI-KFI-2020-00130

References:

1) Krause D.J., Kominek J., Opulente D.A., Shen X.X., Zhou X., Langdon Q.K., DeVirgiliof J., Hulfachora A.B., Kurtzmanf C.P., Hittinger C.T. 2018. Functional and evolutionary characterization of a secondary metabolite gene cluster in budding yeasts. Proc. Natl. Acad. Sci. 115, 11030-11035. DOI: 10.1073/pnas. 1806268115

DOI:

Publication date: October 6, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Zoltán Kállai1*, Kinga Czentye1, Matthias Sipiczki1

1Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary

Contact the author*

Keywords

crop protection, bioprotection, antagonism, Metschnikowia, Botrytis cinerea 

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Combined abiotic-biotic plant stresses on the roots of grapevine

In the 19th century, devastating outbreaks of phylloxera (Daktulosphaira vitifoliae Fitch), almost brought European viticulture to its knees. Phylloxera does not only take energy in form of sugars from the vine, but also affects the up- and down- regulations of genes, acts as a carbon sink and reprograms the physiology of the grapevines, including nutrient uptake and the defense system [1]. A key trait of rootstocks is the ability to perform well under high lime conditions as about 30 % of the land surface has calcareous soil. Iron deficiency not only causes the well-known problems of lime-induced chlorosis and stunted growth, but also affects the entire plant metabolism.

Preliminary results of water status and metabolite content of three new crossbreed winegrape genotypes

This study presents the preliminary results obtained in 2022, of the evaluation of three new crossbreed winegrape genotypes and their parental varieties, grown under controlled irrigation (60% ETc) and rainfed conditions in a wine-growing area with scarcity of water and high temperatures (Murcia, southeast Spain). The genotypes MC16 and MC80 were obtained from crosses between the varieties ‘Monastrell’ and ‘Cabernet Sauvignon’, and MS104 from crosses between ‘Monastrell’ and ‘Syrah’ [1]. The objective of this study was to analyse the physiological response and vegetative development of the 6 genotypes under the two irrigation conditions, and to study their effect on the content of soluble sugars and chlorophyll in the leaf.

Using climate services to project grapevine varietal adequation under climate change – application to cv. Tempranillo in the Douro wine region

Vine growth circumstances are becoming warmer and drier because of climate change. Higher temperatures advance ripening to a point in the season less conducive to the production of fine wine, while drought reduces yields (Van Leeuwen et al., 2019). Several wine-producing regions around the world have already recognized threats to their viticultural viability (Santos et al., 2020). An economical and cost-effective strategy for adaptation is the employment of late-ripening, drought-resistant plant material (varieties, clones, and rootstocks).

Wine odors: chemicals, physicochemical and perceptive processes involved in their perception

The odors of wines are diverse, complex and dynamic and much research has been devoted to the understanding of their chemical bases. However, while the “basic” chemical part of the problem, namely the identity of the chemicals responsible for the different odor nuances, was satisfactorily solved years ago, there are some relevant questions precluding a clear understanding. These questions are related to the physicochemical interactions determining the effective volatilities of the odorants and, particularly, to the perceptual interactions between different odor molecules affecting in different ways to the final sensory outputs.

Effect of foliar application of Ca, Si and their combination on grape volatile composition

Calcium (Ca) is an important nutrient for plants which plays key signaling and structural roles. It has been observed that exogenous Ca application favors the pectin accumulation and inhibition of polygalacturonase enzymes, minimizing fruit spoilage. Silicon (Si) is a non-essential element which has been found to be beneficial for improving crop yield and quality, as well as plant tolerance to diverse abiotic and biotic stress factors. The effect of Si supply to grapevine has been assessed in few investigations, which reported positive changes in grape quality and must composition.