terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Application of antagonistic Metschnikowia strains against Botrytis cinerea in vineyards 

Application of antagonistic Metschnikowia strains against Botrytis cinerea in vineyards 

Abstract

Less and less chemical plant protection products are approved by the E U. Plant pathogenic fungi become increasingly resistant to the active ingredients that have been around for a long time. Besides, there is a valid demand for effective products that can be applied in organic cultivation.

We examined Metschnikowia strains under laboratory conditions in order to find effective strains against B. cinerea. The antimicrobial mechanism of these yeasts is based on the competition for the ferric ions from the environment. Metschnikowia cells release the pulcherriminic acid which chelates with Fe3+, forming the pigment pulcherrimin. The ability of M. pulcherrima of depleting Fe from the growth media is correlated with it’s ability to inhibit the growth of many microorganism. We compared the strains’ ability to produce pulcherrimin and their ability to inhibit different pathogenic fungi in laboratory conditions. Pulcherrimin production was also reported in the case of other yeast species. Krause et al. (2018) described four genes (PUL1-4) forming a PULcherrimin (PUL) gene cluster present in Kluyveromyces. lactis, K. aestuarii, M. fructicola and Zygotorulaspora mraki. We have also identified the four PULgenes in our effective M. pulcherrima strains.

We conducted field studies in three vintages using a specific M. pulcherrima strains. Based on our results, we can state that we have found an effective method to protect grape against B cinerea, which can be applied both in organic cultivation and also before harvest in conventional technology.

Acknowledgements: The authors would like to thank Anita Kovács, Ilona Szilágyi and Szilvia Struba for the profession technical assistance. This research was financed by the grant 2020-1.1.2-PIACI-KFI-2020-00130

References:

1) Krause D.J., Kominek J., Opulente D.A., Shen X.X., Zhou X., Langdon Q.K., DeVirgiliof J., Hulfachora A.B., Kurtzmanf C.P., Hittinger C.T. 2018. Functional and evolutionary characterization of a secondary metabolite gene cluster in budding yeasts. Proc. Natl. Acad. Sci. 115, 11030-11035. DOI: 10.1073/pnas. 1806268115

DOI:

Publication date: October 6, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Zoltán Kállai1*, Kinga Czentye1, Matthias Sipiczki1

1Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary

Contact the author*

Keywords

crop protection, bioprotection, antagonism, Metschnikowia, Botrytis cinerea 

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Characterization of a Sémillon clonal population: exploring genetic diversity, metabolomic profiles, and phenotypic variations

Sémillon is a cultivated grape variety known for contributing to dry and sweet white wine production. However, only seven approved clones have been officially recognized in France[1]. In this study, we aimed to characterize the genetic diversity and metabolomic profiles of a Sémillon clonal population, shedding light on the potential variations within this important grape variety.

Comparison of ancestral and traditional methods in the elaboration of sparkling wines; preliminary results

Top quality sparkling wines (SW) are mostly produced using the traditional method that implies a second fermentation into the bottle[1]. That is the case of sparkling wines of reputed AOC such as Champagne, Cava or Franciacorta. However, it seems that the first SW was elaborated using the ancestral method in which only one fermentation takes place[2]. That is the case of the classical SW from the AOC Blanquette de Limoux[3]. In both cases, SW age in the bottle during some time in contact with lees favoring yeast’s autolysis[4]. There is a lot of information about traditional method but only few exists about ancestral method. The aim of this work was to compare SW made by the ancestral method with SW made by the traditional method.

Indicators of Sustainable Vineyard Soil Management: Metrics for Assessing Environmental Impacts

The vital role of soils in supporting life on our planet cannot be overstated. Soils provide numerous ecosystem services and functions, including biomass production, carbon sequestration, physical support, biological habitat, and genetic reserve, among others. Understanding the characteristics and sensitivity of soils in a specific terroir, along with effective soil management practices, is crucial for the sustainable management of natural resources.

Vineyard yield estimation using image analysis: assessing bunch occlusions and its dependency on fruiting zone canopy features

Performing accurate vineyard yield estimation is of upmost importance as it provides important benefits to the whole vine and wine industry. Recently, image-analysis approaches have been explored to address this issue however this approach has as main challenge the bunch occlusion, mostly by vegetation but also by neighboring bunches. The present work aims at assessing the magnitude of bunch occlusion by neighboring bunches and to evaluate its dependency on a selection of vegetative and reproductive vine parameters assessed at fruiting zone. Forty vine segments (1 m) of two vineyard plots of the white cultivars ‘Alvarinho’ and ‘Arinto’ were assessed for vegetative and reproductive features at fruiting zone and imaged with a 2D camera.

Discovering the process of noble rot: fungal ecology of grape berries during the noble rot transformation in different vineyards of the Tokaj wine region

Botrytis cinerea, a well-known grapevine pathogen, has more than 1200 host plants causing grey rot in grapevine berries. However, it can also result in a desirable phenomenon called noble rot under specific microclimate conditions. An extraordinary demonstration of this natural process can be observed in the creation of aszú wines within Hungary’s Tokaj wine region. Beside B. cinerea other fungi and yeasts are involved in the secondary metabolic development of the grape berry which contributes to the sensory and analytical characterization of noble rot wines.