terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Lipids at the crossroads of protection: lipid signalling in grapevine defence mechanisms

Lipids at the crossroads of protection: lipid signalling in grapevine defence mechanisms

Abstract

Understanding grapevine molecular processes and the underlying defence responses is vital for developing sustainable disease control strategies. Lipid signalling pathways, involving the synthesis and degradation of lipid molecules, have emerged as a key regulator in plant defence against pathogens. This study aims to elucidate the role of fatty acids and lipid signalling in grapevine’s defence response to P. viticola infection. The expression of lipid metabolism-related as well as lipid signalling genes was analysed, by qPCR, in three grapevine genotypes: Chardonnay (susceptible), Regent (tolerant) with Rpv3-1 resistance loci, and Sauvignac (resistant) harbouring a pyramid of Rpv12 and Rpv3-1 resistance loci. A highly aggressive P. viticola isolate (NW-10/16) was employed for the infection studies. Additionally, fatty acid modulation, by gas chromatography, during infection was monitored, by gas chromatography. The work suggests that lipid metabolism and lipid signalling events is genotype-dependent. Notably, Regent displayed specific modulation of genes associated with lipid signalling and fatty acids, possibly linked to the Rpv3 loci. In contrast, Sauvignac, carrying the Rpv12 locus dominantly, may activate alternative defence pathways rather than lipid signalling.

Acknowledgements: The present work was funded by FCT-Portugal: PhD fellowship, (GL: SFRH/BD/145298/2019); Research Units and projects BioISI (UIDB/00006/2020), project (PTDC/BIA-BQM/28539/2017).

1)  Laureano G. et al. (2018) The interplay between membrane lipids and phospholipase A family members in grapevine resistance against Plasmopara viticola. Sci Rep 8, 14538, DOI 10.1038/s41598-018-32559-z

2)  Laureano G. et al. (2023) Grapevine-Associated Lipid Signalling Is Specifically Activated in an Rpv3 Background in Response to an Aggressive P. viticola Pathovar. Cells, 12(3), 394, DOI 10.3390/cells12030394

DOI:

Publication date: October 6, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Gonçalo Laureano1,2*, Ana Rita Matos1, Andreia Figueiredo1,2

1Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
2Grapevine Pathogen Systems Lab, BioISI, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal

Contact the author*

Keywords

lipid signalling, pathogen interaction, defence, fatty acids

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Oxidability of wines made from Spanish minority grape varieties

The phenolic profile of a wine plays an essential role in its oxidative capacity and in both white and red wines it defines its shelf life[1]. The study of minority varieties to produce wines with peculiar characteristics necessarily includes the phenolic and oxidative characterization of the wines produced. This paper presents the study of wines made from 24 minority and majority white and red grape varieties, focusing on phenolic characteristics (total phenols, slightly polymerized phenols, highly polymerized phenols, anthocyanins…), color, as well as parameters related to the oxidability of the wines and their capacity to consume oxygen [2].

The generation of suspended cell wall material may limit the effect of ultrasound in some varieties

The disruptive effect exerted by high-power ultrasound (US) on plant cell walls, natural barriers to the diffusion of compounds of interest during the maceration of red wines, is established as the reason behind the chromatic improvement that its treatment causes. However, sometimes this improvement is not observed, especially with short maceration times. The presence of a high quantity of suspended cell wall material, which formation is favored by the sonication, could be the cause of this lack of positive results since this cell wall material has a high affinity for phenolic compounds.

Typicality of Rioja wines: identification of sensory profiles for the three subregions of DOCa Rioja

Within the DOCa Rioja three main production areas are differentiated: Rioja Alta (RA), Rioja Alavesa (RAv) and Rioja Oriental (RO). They are three diverse territories with particular characteristics that are claimed to give rise to differentiated profiles. The present work aims at evaluating the sensory diversity of young commercial red wines in these three subregions. Therefore 30 young red wines (mainly Tempranillo and vintage 2021), ten from each subregion, were sensory described following a non-verbal free sorting task and a verbal free comment task by 32 well-established Rioja winemakers.

Phenotyping bud break and trafficking of dormant buds from grafted vine

In grapevine, phenology from bud break to berry maturation, depends on temperature and water availability. Increases in average temperatures accelerates initiation of bud break, exposing newly formed shoots to detrimental environmental stresses. It is therefore essential to identify genotypes that could delay phenology in order to adapt to the environment. The use of different rootstocks has been applied to change scion’s characteristics, to adapt and resist to abiotic and biotic stresses[1].

Glucosidase and esterase salivary activities and their involvement in consumer’s wine sensory perception and liking

Wine flavour is the integration of distinct physiologically defined sensory systems that combine taste, aroma and trigeminal sensations, and it is a key determinant factor for the acceptance of wine by consumers. Volatile compounds, are important contributors to wine flavour, specially to aroma. These small and low-boiling point compounds are easily released into the air allowing to enter and move within the nasal or oral cavities where they can bind the olfactory receptors. Additionally, wine also contains aroma precursors, which are non-volatile compounds, but that can be broken down releasing volatile odorants. During wine tasting, all these chemicals (volatiles and non-volatiles) can be submitted to the action of salivary enzymes.