terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Evaluation of physiological properties of grapevine clones of ‘Tempranillo’ and ‘Graciano’ in DOCa Rioja (Spain)

Evaluation of physiological properties of grapevine clones of ‘Tempranillo’ and ‘Graciano’ in DOCa Rioja (Spain)

Abstract

In order to avoid the loss of grapevine intra-varietal diversity of DOCa Rioja grape varieties, Regional Government of La Rioja established a germplasm bank with more than 1.600 accessions, whose origin lies in the prospecting and sampling of ancient vineyards located throughout the whole region. 30 clones of Tempranillo and 13 clones of Graciano were preselected and multiplied in a new vineyard for further observations. The aim of this work is to describe the first results from the physiological characterization by an optical sensor of these preselected clones, which constitute the base of a new clonal selection that aims to increase the range of available certified clones and to improve the adaptation of these varieties to future objectives and environmental conditions.

 

Candidate clones (30 cv. Tempranillo; 13 cv. Graciano) were planted in 2016 in an experimental vineyard in La Rioja (Spain). A complete randomized block design was set up with four replicates of 10 plants. In 2020, 2021 and 2022 clones were evaluated with DUALEX® handheld sensor at flowering and veraison. DUALEX® is a leafclip meter that can accurately determine the chlorophyll and flavonols contents in leaves. It also provides the NBI® (Nitrogen Balanced Index), a good indicator of plant nitrogen status. Besides, in 2022, clones were measured with Crop Circle ACS 430 TM handheld sensor to determine NDVI index (vigour) of each clon. These sensors are mainly used for abiotic stress studies.

 

These optical sensors were able to identify significant differences between the biotypes, proving to be interesting tools for fast phenotyping of grapevine physiological and vegetative characteristics. The results obtained confirmed therefore the huge wide genetic variability existing between the clones. The diversity found in the levels of chlorophylls, flavonols and nitrogen could be used in future clonal selection programs.

DOI:

Publication date: October 6, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Luis Rivacoba*, Elisa Baroja, Ignacio Martín, Sergio Ibáñez, Javier Portu

Instituto de Ciencias de la Vid y del Vino (Gobierno de La Rioja, Universidad de La Rioja, CSIC). Finca La Grajera, Ctra. de Burgos Km. 6, Logroño, La Rioja 26007, Spain

Contact the author*

Keywords

intra-varietal diversity, climate change, clonal selection, genetic erosion, chlorophyll, NBI

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Effect of irrigation in cover cropping vineyards

Cover cropping in vineyard is a sustainable and alternative soil management system to conventional tillage that is gaining more and more importance among winegrowers and is being promoted, among other organizations, by the European Union through the eco-schemes of the Common Agricultural Policy.
However, the use of cover crops in Mediterranean viticultural environments is conditioned, to a large extent, by the availability of irrigation water which, in a context of global warming like the one we are experiencing, must be adjusted to savings strategies, supplying to the vine only what it needs in each moment.

Evaluation of interception traps for capture of Xylotrechus arvicola (Coleoptera: Cerambycidae) in vineyards varieties from Protected Denomination of Origin León

Xylotrechus arvicola (Coleoptera: Cerambycidae) is a pest in vineyards (Vitis vinifera) in the main Spain wine-producing regions with Protected Denomination of Origin (PDO). The action of the larvae, associated to the spreading of wood fungi, causes damage especially in important varieties of V. vinifera. X. arvicola females lay eggs concentrated in cracks or under the rhytidome in the wood vines, which allows the emerging larvae to get into the wood and make galleries inside the plant being then necessary to prune intensively or to pull up the bored plants (1). The objective of the study was to evaluate captures of X. arvicola insects in five varieties of V. vinifera in PDO León.

Rootstock regulation of scion phenotypes: the relationship between rootstock parentage and petiole mineral concentration

Rootstocks not only provide tolerance to Phylloxera, but also ensure the supply of water and mineral nutrients to the whole plant. Rootstocks are an important way of adapting to environmental conditions while conserving the typical features of scion varieties. We can exploit the large diversity of rootstocks used worldwide to aid this adaptation. The aim of this study was to characterise rootstock regulation of scion mineral status and its relation with scion development.

Model-assisted analysis of the root traits underlying RSA genotypic diversity in Vitis: a promising approach for rootstock selection?

By dissecting the root system architecture (RSA) into its underpinning components (e.g. root emission, axial growth, radial growth, branching, root direction or tropism) and identifying the relationships between them, functional-structural 3D root models are promising tools for analyzing the diversity and complexity of root system phenotypes with Genotype × Environment interactions. The model parameters are assumed to be synthetic traits, less influenced by the environment, and consequently with less polygenic architectures than the integrative RSA traits they drive. Root models can serve as a basis for in silico development of root system ideotypes by highlighting the developmental processes and parameters that most likely influence RSA fitness.

Impact of temperature and solar radiation on grape composition variability in the Saint-Emilion winegrowing area 

Grape composition is strongly influenced by climate conditions. Their expected modifications in near future, notably because of increased temperatures, could significantly modify the biochemical composition of berries at harvest, and thus wine typicity and quality. Elevated temperatures favor sugar accumulation in grapes, enhance malic acid degradation and modify the amino acid content. They also reduce significantly anthocyanin accumulation in Merlot, leading to the imbalance between anthocyanins and sugars, while no significant effects on final anthocyanin levels were reported in Tempranillo[1] and finally affect aromas or aroma precursors.