terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Identification of important genomic regions controlling resistance to biotic and abiotic stresses in Vitis sp. through QTL meta-analysis

Identification of important genomic regions controlling resistance to biotic and abiotic stresses in Vitis sp. through QTL meta-analysis

Abstract

In the context of global change, the environmental conditions are expected to be more stressful for viticulture. The choice of the rootstock may play a crucial role to improve the adaptation of viticulture to new biotic and abiotic threats (Ollat et al., 2016). However, the selection of interesting traits in rootstock breeding programs is complex because of the combination of multiple targets in a same ideotype. In this sense, the integration of studies about the genetic architecture for desired biotic and abiotic response traits allow us to identify genomic regions to combine and those with interesting pleiotropic effects. In this work we aimed to study the genetic determinism of several traits related to disease resistance and tolerance to abiotic stresses in Vitis sp. with a potential interest to be used as grapevine rootstocks. For this purpose, 30 genetic maps and QTL mapping data, available in the literature, were collected and combined with unpublished QTL for root traits obtained at EGFV lab. This information was used to construct a dense consensus genetic map of Vitis sp.. Then, a QTL meta-analysis was conducted using the software Biomercator. The obtained consensus genetic map, comprising information from different Vitis sp. is a useful genetic resource for translational genetics. In addition, the identified meta-QTLs, that combined information from independent studies, allowed to reduce QTL confidence intervals, notably for tolerance to abiotic stress traits. These results, highlight the interest of QTL meta-analysis to narrow-down the position of loci controlling desired traits for rootstock breeding programs, as previously proved for scions (Delfino et al., 2019).

References:

Ollat N. et al. (2016) Grapevine rootstocks: Origins and perspectives. Acta Horticulturae, 1136: 11-22. 10.17660/ActaHortic.2016.1136.2
Delfino, P. (2019) Selection of candidate genes controlling veraison time in grapevine through integration of meta-QTL and transcriptomic data. BMC Genomics, 20:1. https://doi.org/10.1186/s12864-019-6124-0

DOI:

Publication date: October 6, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Elsa Chedid1*, Pierre Gastou2, Jean-Pascal Tandonnet1, Philippe Vivin1, Sarah Cookson1, Pierre-François Bert1, Nathalie Ollat1, Elisa Marguerit1, Marina de Miguel1

1 EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33882 Villenave d’Ornon, France
2 UMR SAVE, INRAE, BSA, ISVV, 33882 Villenave d’Ornon, France

Contact the author*

Keywords

biotic stress, abiotic stress, meta-analysis, QTL, Vitis sp

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

The generation of suspended cell wall material may limit the effect of ultrasound in some varieties

The disruptive effect exerted by high-power ultrasound (US) on plant cell walls, natural barriers to the diffusion of compounds of interest during the maceration of red wines, is established as the reason behind the chromatic improvement that its treatment causes. However, sometimes this improvement is not observed, especially with short maceration times. The presence of a high quantity of suspended cell wall material, which formation is favored by the sonication, could be the cause of this lack of positive results since this cell wall material has a high affinity for phenolic compounds.

A comprehensive study on the effect of foliar mineral treatments on grapevine microbiota, flavonoid gene expression, and berry composition

Recently, foliar treatments with mineral-based compounds have shown positive effects on grapevine production by protecting grape from thermal excesses and reducing the decoupling between technological and phenolic maturity caused by climate change. Unraveling the effect of mineral particle applications on grape-associated microbes is pivotal for successful wine processing, due to the influence of the microbiota on wine composition and stability. To our knowledge, this is the first work that comprehensively studied the effects of kaolin and chabasite-rich zeolitites treatments on grape-related microorganisms (by real-time PCR quantification of total fungi, Hanseniospora uvarum, Metschnikowia pulcherrima, plant-associated bacteria and lactic acid bacteria), the expression of genes related to the flavonoid biosynthesis (PAL1, CHS1, F3H2, DFR, LDOX, UFGT, MYBA1, GST4, FLS4 genes) and the berry composition (°Brix, pH, acidity and anthocyanin concentrations) in cv. Sangiovese during ripening in two growing seasons (2019 and 2020).

Applicability of grape native yeasts to enhance regional wine typicity

The universalization in wine production has been restricting the imprint of terroir in regional wines, resulting in loss of typicity. Microbes are the main driving force in wine production, conducting fermentation and originating a myriad of metabolites that underly wine aroma. Grape berries harbor an ecological niche composed of filamentous fungi, yeasts and bacteria, which are influenced by the ripening stage, cultivar and region. The research project GrapeMicrobiota gathers a consortium from University of Zaragoza, University of Minho and University of Tours and aims at the isolation of native yeast strains from berries of the wine region Douro, UNESCO World Heritage, towards the production of wines that stand out in the market for their authenticity and for reflecting their region of origin in their aroma.

Role of anthocyanins and copigmentation in flavonol solubility in red wines 

Over the last years, due to climate change, several red wines, such as the Sangiovese wines, have been often subjected to loss of clarity due to the formation of deposits of fine needle-shaped crystals. This phenomenon turned out to be due to an excess of quercetin (Q) and its glycosides (Q-Gs) in wines. These compounds are synthesized to a large extent when grapes are excessively exposed to UVB radiations in vineyards[1]. Unfortunately, it is not easy to predict the degree of Q precipitation because its solubility strongly depends on the wine and matrix composition[2].

Use of UHPH to improve the implantation of non-Saccharomyces yeasts

Ultra High-Pressure Homogenization (UHPH) is a high-pressure pumping at 300 MPa (>200 MPa) with a subsequent depressurization against a highly resistant valve made of tungsten carbide covered by ceramic materials or carbon nanoparticles. The intense impact and shear efforts produce the nano-fragmentation of colloidal biopolymers including the elimination of microorganism (pasteurization or sterilization depending on in-valve temperature) and the inactivation of enzymes.