terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Identification of important genomic regions controlling resistance to biotic and abiotic stresses in Vitis sp. through QTL meta-analysis

Identification of important genomic regions controlling resistance to biotic and abiotic stresses in Vitis sp. through QTL meta-analysis

Abstract

In the context of global change, the environmental conditions are expected to be more stressful for viticulture. The choice of the rootstock may play a crucial role to improve the adaptation of viticulture to new biotic and abiotic threats (Ollat et al., 2016). However, the selection of interesting traits in rootstock breeding programs is complex because of the combination of multiple targets in a same ideotype. In this sense, the integration of studies about the genetic architecture for desired biotic and abiotic response traits allow us to identify genomic regions to combine and those with interesting pleiotropic effects. In this work we aimed to study the genetic determinism of several traits related to disease resistance and tolerance to abiotic stresses in Vitis sp. with a potential interest to be used as grapevine rootstocks. For this purpose, 30 genetic maps and QTL mapping data, available in the literature, were collected and combined with unpublished QTL for root traits obtained at EGFV lab. This information was used to construct a dense consensus genetic map of Vitis sp.. Then, a QTL meta-analysis was conducted using the software Biomercator. The obtained consensus genetic map, comprising information from different Vitis sp. is a useful genetic resource for translational genetics. In addition, the identified meta-QTLs, that combined information from independent studies, allowed to reduce QTL confidence intervals, notably for tolerance to abiotic stress traits. These results, highlight the interest of QTL meta-analysis to narrow-down the position of loci controlling desired traits for rootstock breeding programs, as previously proved for scions (Delfino et al., 2019).

References:

Ollat N. et al. (2016) Grapevine rootstocks: Origins and perspectives. Acta Horticulturae, 1136: 11-22. 10.17660/ActaHortic.2016.1136.2
Delfino, P. (2019) Selection of candidate genes controlling veraison time in grapevine through integration of meta-QTL and transcriptomic data. BMC Genomics, 20:1. https://doi.org/10.1186/s12864-019-6124-0

DOI:

Publication date: October 6, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Elsa Chedid1*, Pierre Gastou2, Jean-Pascal Tandonnet1, Philippe Vivin1, Sarah Cookson1, Pierre-François Bert1, Nathalie Ollat1, Elisa Marguerit1, Marina de Miguel1

1 EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33882 Villenave d’Ornon, France
2 UMR SAVE, INRAE, BSA, ISVV, 33882 Villenave d’Ornon, France

Contact the author*

Keywords

biotic stress, abiotic stress, meta-analysis, QTL, Vitis sp

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Genetic prospecting of rainfed viticulture in the region with the largest cultivated area in Chile

The Maule region hosts up to a third of the total area of vineyards in Chile, in an environment where ancient practices inherited from the colonial past coexist with modernity and dynamism that include technified irrigation and fine vines. In the dry land of Maule there is a viticulture that has subsisted with ancient vines and traditions transmitted over generations, and there is little clarity about the origin and classification of the Maule viticulture, giving rise to the use of different concepts as synonyms to describe the ancient, minority, patrimonial or Criollas vines. In order to characterize and protect the ancient material, we studied the genetic diversity of a territorial collection that covers 80% of the communes of the region, prioritizing plants established more than 40-60 years ago.

Grapevine cane pruning extract enhances plant physiological capacities and decreases phenolic accumulation in canes and leaves 

Vine cane extracts are a valuable byproduct due to their rich content of polyphenols, vitamins, and other beneficial compounds, which can affect and benefit the vine and the grapes. This study aims to evaluate the response of grapevine plants to irrigation with water supplemented with a vine cane extract, both at physiology response and phenolic composition in different parts of the plant (root, trunk, shoot, leaf, and berry).
Cane extract was obtained by macerating crushed pruning residues with warm water (5:1) and pectolytic enzymes. Two-year-old potted plants were irrigated with water (Control) while others were irrigated with cane extracts, either at 1:4 (w/v, cane extract/water; T 1:4) or at 1:8 (w/v, cane extract/water; T 1:8).

New food trend ahead? Highlighting the nutritional benefits of grapevine leaves

The wine industry produces an enormous amount of waste every year. A wider inclusion of disregarded by-products in the human diet or its use as a source of bioactive compounds is a good strategy for reducing waste. It will not only introduce an added value to a waste product but also come upon the European Union and United Nations’ demands towards more sustainable agricultural approaches and circular economy.

Using climate services to project grapevine varietal adequation under climate change – application to cv. Tempranillo in the Douro wine region

Vine growth circumstances are becoming warmer and drier because of climate change. Higher temperatures advance ripening to a point in the season less conducive to the production of fine wine, while drought reduces yields (Van Leeuwen et al., 2019). Several wine-producing regions around the world have already recognized threats to their viticultural viability (Santos et al., 2020). An economical and cost-effective strategy for adaptation is the employment of late-ripening, drought-resistant plant material (varieties, clones, and rootstocks).

Exploring the prevalence of esca-induced leaf symptoms in French vineyards and the role of climate: a national scale analysis

Esca, a severe trunk disease affecting vineyards, is caused by fungal pathogens that induce wood necrosis and decay, leaf symptoms, yield losses, and potentially a rapid death of the vine. The prevalence of this disease varies across years, regions, cultivars, and plot ages. Despite its significance in understanding and predicting dieback risk in different vineyards, the role of climate in trunk diseases remains a relatively unexplored research area. While some studies have demonstrated the impact of certain climatic conditions on the prevalence of the disease, they often focus on a limited number of plots and yield conflicting results.We conducted a statistical analysis, using a Bayesian approach on a national database comprising prevalence data of esca from over 500 different plots in France, spanning the years 2003 to 2022 and encompassing various cultivars.