terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Identification of important genomic regions controlling resistance to biotic and abiotic stresses in Vitis sp. through QTL meta-analysis

Identification of important genomic regions controlling resistance to biotic and abiotic stresses in Vitis sp. through QTL meta-analysis

Abstract

In the context of global change, the environmental conditions are expected to be more stressful for viticulture. The choice of the rootstock may play a crucial role to improve the adaptation of viticulture to new biotic and abiotic threats (Ollat et al., 2016). However, the selection of interesting traits in rootstock breeding programs is complex because of the combination of multiple targets in a same ideotype. In this sense, the integration of studies about the genetic architecture for desired biotic and abiotic response traits allow us to identify genomic regions to combine and those with interesting pleiotropic effects. In this work we aimed to study the genetic determinism of several traits related to disease resistance and tolerance to abiotic stresses in Vitis sp. with a potential interest to be used as grapevine rootstocks. For this purpose, 30 genetic maps and QTL mapping data, available in the literature, were collected and combined with unpublished QTL for root traits obtained at EGFV lab. This information was used to construct a dense consensus genetic map of Vitis sp.. Then, a QTL meta-analysis was conducted using the software Biomercator. The obtained consensus genetic map, comprising information from different Vitis sp. is a useful genetic resource for translational genetics. In addition, the identified meta-QTLs, that combined information from independent studies, allowed to reduce QTL confidence intervals, notably for tolerance to abiotic stress traits. These results, highlight the interest of QTL meta-analysis to narrow-down the position of loci controlling desired traits for rootstock breeding programs, as previously proved for scions (Delfino et al., 2019).

References:

Ollat N. et al. (2016) Grapevine rootstocks: Origins and perspectives. Acta Horticulturae, 1136: 11-22. 10.17660/ActaHortic.2016.1136.2
Delfino, P. (2019) Selection of candidate genes controlling veraison time in grapevine through integration of meta-QTL and transcriptomic data. BMC Genomics, 20:1. https://doi.org/10.1186/s12864-019-6124-0

DOI:

Publication date: October 6, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Elsa Chedid1*, Pierre Gastou2, Jean-Pascal Tandonnet1, Philippe Vivin1, Sarah Cookson1, Pierre-François Bert1, Nathalie Ollat1, Elisa Marguerit1, Marina de Miguel1

1 EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33882 Villenave d’Ornon, France
2 UMR SAVE, INRAE, BSA, ISVV, 33882 Villenave d’Ornon, France

Contact the author*

Keywords

biotic stress, abiotic stress, meta-analysis, QTL, Vitis sp

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Influence of irrigation frequency on berry phenolic composition of red grape varieties cultivated in four spanish wine-growing regions

The global warming phenomenon involves the frequency of extreme meteorological events accompanied by a change in rainfall distribution. Irrigation frequency (IF) affects the spatial and temporal soil water distribution but its effects on the phenolic composition of the grape have been scarcely studied. The aim of this work was to evaluate the effects of four deficit irrigation frequencies of 30 % ETo: one irrigation per day (T01), two irrigations per week (T03), one irrigation per week (T07) and one irrigation every two weeks (T15) on berry phenolic composition at harvest.

Phenolic extraction and dissolved oxygen concentration during red wines fermentations with Airmixig M.I.™

During red wine fermentation, the extraction of phenolics compounds and sufficient oxygen provision are critical for wine quality [1,2]. In this trial, we aimed at evaluating the kinetics of phenolic extraction and dissolved oxygen during red wine fermentations using the airmixing system. Twenty lots of red grape musts were fermented in 300.000 L tanks, equipped with airmixing, using two injection regimes (i.e., high and low intensity, and high and low daily frequency). An oxygen analyzer was introduced into the tanks in order to record the concentration of dissolved oxygen over time.

Application of antagonistic Metschnikowia strains against Botrytis cinerea in vineyards 

Less and less chemical plant protection products are approved by the E U. Plant pathogenic fungi become increasingly resistant to the active ingredients that have been around for a long time. Besides, there is a valid demand for effective products that can be applied in organic cultivation.
We examined Metschnikowia strains under laboratory conditions in order to find effective strains against B. cinerea. The antimicrobial mechanism of these yeasts is based on the competition for the ferric ions from the environment. Metschnikowia cells release the pulcherriminic acid which chelates with Fe3+, forming the pigment pulcherrimin.

New food trend ahead? Highlighting the nutritional benefits of grapevine leaves

The wine industry produces an enormous amount of waste every year. A wider inclusion of disregarded by-products in the human diet or its use as a source of bioactive compounds is a good strategy for reducing waste. It will not only introduce an added value to a waste product but also come upon the European Union and United Nations’ demands towards more sustainable agricultural approaches and circular economy.

Rootstock effect on Cabernet Sauvignon aromatic and chemical composition

Grape quality potential for wine production is strongly influenced by environmental parameters and agronomic factors. Several studies underline the rootstock effect on scions vegetative growth and berry composition [1] with an impact on wine quality. Rootstocks are promising agronomic tools for climate change adaptation and in most grape-growing regions the potential diversity of rootstocks is not fully used and only a few genotypes are planted. Moreover, little is known about the effect of rootstock genetic variability on the aromatic composition in wines.