terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Potential of new genetic resources to improve drought adaptation of grapevine rootstocks

Potential of new genetic resources to improve drought adaptation of grapevine rootstocks

Abstract

Grapevines are grown mainly as grafts worldwide, but the rootstocks most commonly used were selected between the late 19th and early 20th centuries and are based on reduced genetic diversity[1]. In the context of climate change, it is indeed urgent to diversify the range of rootstocks with genotypes much more adapted to drier environments, than the existing ones[2]. The aim of this study was to evaluate the potential of new genetic resources for grapevine rootstock breeding programs. For this purpose, 12 American and Asian wild Vitis species (3 to 5 accessions per species = 50 accessions) were evaluated for their rooting ability and drought response. The plants were submitted to different irrigation treatments (moderate water deprivation vs well-watered) in a phenotyping platform for one month. Evaluation of gas exchange related traits and vegetative growth was performed during the experiment. Rooting ability and root morphology at different developmental stages were also recorded using image analysis using Rhizovision and SmartRoot softwares. We used mixed models to estimate broad-sense heritability. We observed high genetic variation among and within species for root traits and aerial drought response. Genetic correlations between aerial traits in response to drought and constitutive root morphology allowed us to select interesting accessions to be used in breeding programs. The 50 evaluated accessions have been grafted in 2023 to evaluate the interactions with the scion when used as rootstocks.

Acknowledgements: This study was supported by funding from INRAE, the Nouvelle-Aquitaine region (project VitiScope) and the CNIV. We acknowledge Maria Lafargue, Cyril Hevin, Nicolas Hocquard and Jean-Pierre Petit for their help with the plant material preparation.

References:

1)  Riaz, S. et al. (2019) Genetic diversity and parentage analysis of grape rootstocks. Theorethical and Applied Genetics 132, 1847–1860.
2)  Marín, D. et al.(2021) Challenges of viticulture adaptation to global change : Tackling the issue from the roots. Australian Journal of Grape and Wine Research, 27(1), Article 1.

DOI:

Publication date: October 6, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Etienne R. Patin1*, Ander del Sol Iturralde2, Usue Pérez-Lopez2, Pierre Gastou3, Jean-Pascal Tandonnet1, Elisa Marguerit1, Clément SaintCast1, Philippe Vivin1, Nathalie Ollat1, Marina de Miguel1

1 EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33882 Villenave d’Ornon, France
2 Departamento de Biología Vegetal y Ecología, Facultad de Ciencia y Tecnología, Universidad del País Vasco, UPV/EHU, Apdo. 644, 48080, Bilbao, Spain
UMR SAVE, INRAE, BSA, ISVV, 33882 Villenave d’Ornon, France

Contact the author*

Keywords

breeding, drought, heritability, roots, wild Vitis

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Indicators of Sustainable Vineyard Soil Management: Metrics for Assessing Environmental Impacts

The vital role of soils in supporting life on our planet cannot be overstated. Soils provide numerous ecosystem services and functions, including biomass production, carbon sequestration, physical support, biological habitat, and genetic reserve, among others. Understanding the characteristics and sensitivity of soils in a specific terroir, along with effective soil management practices, is crucial for the sustainable management of natural resources.

Preliminary study of the influence of ripening on the polysaccharide content of different red grape varieties

Grape skin has a barrier and protective function in grapes. Cell wall of grape skins is mainly composed of polysaccharides such as pectins, celulloses and hemicelluloses and structural proteins. Terroir, variety and changes during ripening can affect the content of polysaccharides in grapes. The aim of this study was to evaluate the content of polysaccharides (PS) in grapes along the ripening process. Three red grape varieties were studied: Garnacha (G), Tempranillo (T) and Prieto Picudo (PP).

Phenolic composition of Cabernet Sauvignon wines from Argentina, Portugal and Spain

Grape and wine phenolic compounds have been shown to be highly related to both wine quality (color, flavor, and taste) and health-promoting properties (antioxidant and cardioprotective, among others). The aim of this work was to evaluate and compare the phenolic contents of Cabernet Sauvignon wines from different geographical areas and climatic conditions, namely from Argentina, Portugal and Spain vintage 2022. In addition, the phenolic profiles of the Portuguese wines from three vintages (2020, 2021, 2022) was compared.

Stomatal abundance in grapevine: developmental genes, genotypic variation, and physiology

Grapevine cultivation is threatened by the global warming, which combines high temperatures and reduced rainfall, impacting in wine quality and even plant survival. Breeding for varieties resilient to these challenges must address plant traits such as tolerance to supraoptimal temperatures and optimized water use efficiency while minimizing productivity and quality losses. Stomatal abundance (SA) determines the maximum leaf potential for transpiration and thus water loss and cooling. Since SA results from a developmental process during leaf emergence and growth, knowledge on the genetic control of this process would provide specific targets for modification.

Molecularly imprinted polymers: an innovative strategy for harvesting polyphenoles from grape seed extracts

Multiple sclerosis (MS) is a multifactorial autoimmune disease associating demyelination and axonal degeneration developing in young adults and affecting 2–3 million people worldwide. Plant polyphenols endowed with many therapeutic benefits associated with anti-inflammatory and antioxidant properties represent highly interesting new potential therapeutic strategies. We recently showed the safety and high efficiency of grape seed extract (GSE), a complex mixture of polyphenolics compounds comprising notably flavonoids and proanthocyanidins, in an experimental autoimmune encephalomyelitis (EAE) mouse model of MS.