terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Potential of new genetic resources to improve drought adaptation of grapevine rootstocks

Potential of new genetic resources to improve drought adaptation of grapevine rootstocks

Abstract

Grapevines are grown mainly as grafts worldwide, but the rootstocks most commonly used were selected between the late 19th and early 20th centuries and are based on reduced genetic diversity[1]. In the context of climate change, it is indeed urgent to diversify the range of rootstocks with genotypes much more adapted to drier environments, than the existing ones[2]. The aim of this study was to evaluate the potential of new genetic resources for grapevine rootstock breeding programs. For this purpose, 12 American and Asian wild Vitis species (3 to 5 accessions per species = 50 accessions) were evaluated for their rooting ability and drought response. The plants were submitted to different irrigation treatments (moderate water deprivation vs well-watered) in a phenotyping platform for one month. Evaluation of gas exchange related traits and vegetative growth was performed during the experiment. Rooting ability and root morphology at different developmental stages were also recorded using image analysis using Rhizovision and SmartRoot softwares. We used mixed models to estimate broad-sense heritability. We observed high genetic variation among and within species for root traits and aerial drought response. Genetic correlations between aerial traits in response to drought and constitutive root morphology allowed us to select interesting accessions to be used in breeding programs. The 50 evaluated accessions have been grafted in 2023 to evaluate the interactions with the scion when used as rootstocks.

Acknowledgements: This study was supported by funding from INRAE, the Nouvelle-Aquitaine region (project VitiScope) and the CNIV. We acknowledge Maria Lafargue, Cyril Hevin, Nicolas Hocquard and Jean-Pierre Petit for their help with the plant material preparation.

References:

1)  Riaz, S. et al. (2019) Genetic diversity and parentage analysis of grape rootstocks. Theorethical and Applied Genetics 132, 1847–1860.
2)  Marín, D. et al.(2021) Challenges of viticulture adaptation to global change : Tackling the issue from the roots. Australian Journal of Grape and Wine Research, 27(1), Article 1.

DOI:

Publication date: October 6, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Etienne R. Patin1*, Ander del Sol Iturralde2, Usue Pérez-Lopez2, Pierre Gastou3, Jean-Pascal Tandonnet1, Elisa Marguerit1, Clément SaintCast1, Philippe Vivin1, Nathalie Ollat1, Marina de Miguel1

1 EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33882 Villenave d’Ornon, France
2 Departamento de Biología Vegetal y Ecología, Facultad de Ciencia y Tecnología, Universidad del País Vasco, UPV/EHU, Apdo. 644, 48080, Bilbao, Spain
UMR SAVE, INRAE, BSA, ISVV, 33882 Villenave d’Ornon, France

Contact the author*

Keywords

breeding, drought, heritability, roots, wild Vitis

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

What to do to solve the riddle of vine rootstock induced drought tolerance

Climate change will increase the frequency of water deficit situation in some European regions, by the increase of the evapotranspiration and the reduction of rainfalls during the growing cycle. This requires finding ways of adaptation, including the use of plant material which is more tolerant to drought. In addition to the varieties used as scions that result in the typicality of wines, rootstocks constitute a relevant way of adaptation to more stressful environmental conditions.

Evaluation of physiological properties of grapevine clones of ‘Tempranillo’ and ‘Graciano’ in DOCa Rioja (Spain)

In order to avoid the loss of grapevine intra-varietal diversity of DOCa Rioja grape varieties, Regional Government of La Rioja established a germplasm bank with more than 1.600 accessions, whose origin lies in the prospecting and sampling of ancient vineyards located throughout the whole region. 30 clones of Tempranillo and 13 clones of Graciano were preselected and multiplied in a new vineyard for further observations. The aim of this work is to describe the first results from the physiological characterization by an optical sensor of these preselected clones, which constitute the base of a new clonal selection that aims to increase the range of available certified clones and to improve the adaptation of these varieties to future objectives and environmental conditions.

Identification of important genomic regions controlling resistance to biotic and abiotic stresses in Vitis sp. through QTL meta-analysis

In the context of global change, the environmental conditions are expected to be more stressful for viticulture. The choice of the rootstock may play a crucial role to improve the adaptation of viticulture to new biotic and abiotic threats (Ollat et al., 2016). However, the selection of interesting traits in rootstock breeding programs is complex because of the combination of multiple targets in a same ideotype. In this sense, the integration of studies about the genetic architecture for desired biotic and abiotic response traits allow us to identify genomic regions to combine and those with interesting pleiotropic effects.

Climate change and viticulture in Nordic Countries and the Helsinki area

The first vineyards in Northern Europe were in Denmark in the 15th century, in the southern parts of Sweden and Finland in the 18th century at 55–60 degrees latitude. The grapes grown there have not been made into wine, but the grapes have been eaten at festive tables. The resurgence of viticulture has started with global warming, and currently the total area of viticulture in the Nordic countries, including Norway, is estimated to be 400–500 hectares, most of which is in Denmark. Southern Finland, like all southern parts of Northern Europe, belongs to the cool-cold winegrowing area.

Crown procyanidin quantification in red wines, rosé wines and Port wines

Condensed grape tannins play a major role in the organoleptic properties and quality of red wine. Recently, a new sub-family of macrocyclic condensed tannins has been identified in red wine and named “crown tannins”. Indeed, the first compound of the family identified and characterised by NMR was the crown procyanidin tetramer which is composed of a macrocyclic structure composed of four (-)-epicatechins link together by B-type interflavanoid linkage in the following an alternative sequences of C4-C8 and C4-C6 linkage. The 3D structure of this unusual crown procyanidin family reveals a central cavity in the molecule [1].