terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Potential of new genetic resources to improve drought adaptation of grapevine rootstocks

Potential of new genetic resources to improve drought adaptation of grapevine rootstocks

Abstract

Grapevines are grown mainly as grafts worldwide, but the rootstocks most commonly used were selected between the late 19th and early 20th centuries and are based on reduced genetic diversity[1]. In the context of climate change, it is indeed urgent to diversify the range of rootstocks with genotypes much more adapted to drier environments, than the existing ones[2]. The aim of this study was to evaluate the potential of new genetic resources for grapevine rootstock breeding programs. For this purpose, 12 American and Asian wild Vitis species (3 to 5 accessions per species = 50 accessions) were evaluated for their rooting ability and drought response. The plants were submitted to different irrigation treatments (moderate water deprivation vs well-watered) in a phenotyping platform for one month. Evaluation of gas exchange related traits and vegetative growth was performed during the experiment. Rooting ability and root morphology at different developmental stages were also recorded using image analysis using Rhizovision and SmartRoot softwares. We used mixed models to estimate broad-sense heritability. We observed high genetic variation among and within species for root traits and aerial drought response. Genetic correlations between aerial traits in response to drought and constitutive root morphology allowed us to select interesting accessions to be used in breeding programs. The 50 evaluated accessions have been grafted in 2023 to evaluate the interactions with the scion when used as rootstocks.

Acknowledgements: This study was supported by funding from INRAE, the Nouvelle-Aquitaine region (project VitiScope) and the CNIV. We acknowledge Maria Lafargue, Cyril Hevin, Nicolas Hocquard and Jean-Pierre Petit for their help with the plant material preparation.

References:

1)  Riaz, S. et al. (2019) Genetic diversity and parentage analysis of grape rootstocks. Theorethical and Applied Genetics 132, 1847–1860.
2)  Marín, D. et al.(2021) Challenges of viticulture adaptation to global change : Tackling the issue from the roots. Australian Journal of Grape and Wine Research, 27(1), Article 1.

DOI:

Publication date: October 6, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Etienne R. Patin1*, Ander del Sol Iturralde2, Usue Pérez-Lopez2, Pierre Gastou3, Jean-Pascal Tandonnet1, Elisa Marguerit1, Clément SaintCast1, Philippe Vivin1, Nathalie Ollat1, Marina de Miguel1

1 EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33882 Villenave d’Ornon, France
2 Departamento de Biología Vegetal y Ecología, Facultad de Ciencia y Tecnología, Universidad del País Vasco, UPV/EHU, Apdo. 644, 48080, Bilbao, Spain
UMR SAVE, INRAE, BSA, ISVV, 33882 Villenave d’Ornon, France

Contact the author*

Keywords

breeding, drought, heritability, roots, wild Vitis

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Biodiversity and biocontrol ability of Trichoderma natural populations in soil vineyards from Castilla y León region (Spain)

Trichoderma is a microorganism present in many agricultural soils and some of its species could be used as natural biological control agents. In this work, the presence of natural populations of Trichoderma was estimated in soil vineyard and its biocontrol capacity against Phaeoacremonium minimum, one of the main agent causals of grapevine trunk diseases instead of using pesticides. Moreover, physicochemical variables in soil such as pH, organic matter and nutrients were evaluated to determine a possible correlation to natural populations of Trichoderma.

Mycorrhizal symbiosis modulates flavonoid and amino acid profiles in grapes of Tempranillo and Cabernet Sauvignon 

Arbuscular mycorrhizal fungi (AMF) symbiosis is probably the most widespread beneficial interaction between plants and microorganisms. AMF has been widely reported to promote grapevine growth, water and nutrient uptake as well as both biotic and abiotic stress tolerance[1]. However, the impact of AMF on grape composition has been less studied. The aim of this work was to evaluate the effects of the association between two commercial grapevine cultivars (Tempranillo and Cabernet Sauvignon grafted onto 110 rootstock) and AMF on the anthocyanin, flavonol and amino acid concentrations and profiles of grapes.

Genetic prospecting of rainfed viticulture in the region with the largest cultivated area in Chile

The Maule region hosts up to a third of the total area of vineyards in Chile, in an environment where ancient practices inherited from the colonial past coexist with modernity and dynamism that include technified irrigation and fine vines. In the dry land of Maule there is a viticulture that has subsisted with ancient vines and traditions transmitted over generations, and there is little clarity about the origin and classification of the Maule viticulture, giving rise to the use of different concepts as synonyms to describe the ancient, minority, patrimonial or Criollas vines. In order to characterize and protect the ancient material, we studied the genetic diversity of a territorial collection that covers 80% of the communes of the region, prioritizing plants established more than 40-60 years ago.

Grape pomace, an active ingredient at the intestinal level: Updated evidence

Grape pomace (GP) is a winemaking by-product particularly rich in (poly)phenols and dietary fiber, which are the main active compounds responsible for its health-promoting effects. GP-derived products have been proposed to manage cardiovascular risk factors, including endothelial dysfunction, inflammation, hypertension, hyperglycemia, and obesity. Studies on the potential impact of GP on gut health are much more recent. However, it is suggested that, to some extent, this activity of GP as a cardiometabolic health-promoting ingredient would begin in the gastrointestinal tract as GP components (i.e., (poly)phenols and fiber) undergo extensive catabolism, mainly by the action of the intestinal microbiota, that gives rise to low-molecular-weight bioactive compounds that can be absorbed and utilized by the body.

Effect of irrigation in cover cropping vineyards

Cover cropping in vineyard is a sustainable and alternative soil management system to conventional tillage that is gaining more and more importance among winegrowers and is being promoted, among other organizations, by the European Union through the eco-schemes of the Common Agricultural Policy.
However, the use of cover crops in Mediterranean viticultural environments is conditioned, to a large extent, by the availability of irrigation water which, in a context of global warming like the one we are experiencing, must be adjusted to savings strategies, supplying to the vine only what it needs in each moment.