terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Potential of new genetic resources to improve drought adaptation of grapevine rootstocks

Potential of new genetic resources to improve drought adaptation of grapevine rootstocks

Abstract

Grapevines are grown mainly as grafts worldwide, but the rootstocks most commonly used were selected between the late 19th and early 20th centuries and are based on reduced genetic diversity[1]. In the context of climate change, it is indeed urgent to diversify the range of rootstocks with genotypes much more adapted to drier environments, than the existing ones[2]. The aim of this study was to evaluate the potential of new genetic resources for grapevine rootstock breeding programs. For this purpose, 12 American and Asian wild Vitis species (3 to 5 accessions per species = 50 accessions) were evaluated for their rooting ability and drought response. The plants were submitted to different irrigation treatments (moderate water deprivation vs well-watered) in a phenotyping platform for one month. Evaluation of gas exchange related traits and vegetative growth was performed during the experiment. Rooting ability and root morphology at different developmental stages were also recorded using image analysis using Rhizovision and SmartRoot softwares. We used mixed models to estimate broad-sense heritability. We observed high genetic variation among and within species for root traits and aerial drought response. Genetic correlations between aerial traits in response to drought and constitutive root morphology allowed us to select interesting accessions to be used in breeding programs. The 50 evaluated accessions have been grafted in 2023 to evaluate the interactions with the scion when used as rootstocks.

Acknowledgements: This study was supported by funding from INRAE, the Nouvelle-Aquitaine region (project VitiScope) and the CNIV. We acknowledge Maria Lafargue, Cyril Hevin, Nicolas Hocquard and Jean-Pierre Petit for their help with the plant material preparation.

References:

1)  Riaz, S. et al. (2019) Genetic diversity and parentage analysis of grape rootstocks. Theorethical and Applied Genetics 132, 1847–1860.
2)  Marín, D. et al.(2021) Challenges of viticulture adaptation to global change : Tackling the issue from the roots. Australian Journal of Grape and Wine Research, 27(1), Article 1.

DOI:

Publication date: October 6, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Etienne R. Patin1*, Ander del Sol Iturralde2, Usue Pérez-Lopez2, Pierre Gastou3, Jean-Pascal Tandonnet1, Elisa Marguerit1, Clément SaintCast1, Philippe Vivin1, Nathalie Ollat1, Marina de Miguel1

1 EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33882 Villenave d’Ornon, France
2 Departamento de Biología Vegetal y Ecología, Facultad de Ciencia y Tecnología, Universidad del País Vasco, UPV/EHU, Apdo. 644, 48080, Bilbao, Spain
UMR SAVE, INRAE, BSA, ISVV, 33882 Villenave d’Ornon, France

Contact the author*

Keywords

breeding, drought, heritability, roots, wild Vitis

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

The exploitation of Croatian grapevine genetic resources for the breeding of new resistant cultivars 

Croatian viticulture is mainly based on native grapevine varieties susceptible to various diseases and pests, which leads to unsustainable use of large amounts of pesticides. The sustainable development of viticulture in the future will only be possible by increasing the resistance of the grapevine through the development of new resistant varieties. Breeding programs have been launched in the leading wine-growing countries to develop resistant varieties possessing high-quality levels. Native cultivars from Croatia are not included in the breeding programs of other countries.

Organic mulches slightly influence wine phenolic composition and sensorial properties

Grapevines have traditionally been grown in semi-arid areas, but viticulture is now compromised by climate change. Therefore, it is necessary to implement environmentally friendly viticulture practices to adapt grapevines to current climatic conditions. In this context, organic mulches offer many benefits, such as reduced soil erosion and increased organic matter, soil water content and crop productivity. However, these practices must not compromise grape and wine quality. Therefore, the objective of this study was to evaluate the effect on wine physicochemical and phenolic composition and sensorial properties of different soil management practices on the vine row. Over four years, five soil treatments were examined in two different vineyards.

is the overall ecological awarness among Spanish winemakers related to their attitudes towards natural wines?

The Agenda 2030 of the EU sets out the main guidelines for transitioning towards a resilient, green and safe economy. To this regard, the wine sector is experiencing an ecological transition in different ways such as increasing the production of ecological crops, or promoting the production of wines under more environmental-friendly and healthier (i.e., lower levels of SO2) products. These alternatives to conventional production are a smaller proportion of wines, in constant growth and demand, and follow alternative and minority practices, which range from sustainable to deeply philosophical thoughts. Among these methods there are organic, biodynamic and, more recently, natural wines.

Reconstructing ancient microbial fermentation genomes from the wine residues of Herod, Roman king of Judea

The fortress of the Herodium, built towards the end of the first century BCE/ante Cristo, on the orders of Herod the Great, Roman client king of Judea, attests the expansion of Roman influence in the eastern Mediterranean. During archaeological excavations of the Herodium in 2017[1], a winery was discovered on the ground floor of the palace, with an assortment of clay vessels in situ, including large dolia – clay fermentation vessels each capable of fermenting up to 300-400 L of wine. Thanks to the recent progresses in the field of paleogenomics[2], we could analyse the organic material consistent with grape pomace at the bottom of these vessels, by extracting and sequencing the DNA using shotgun metagenomics and targeted capture, aiming for enrichment of DNA from fermentation associated microbes.

The characterization of Vitis vinifera L cv. Cabernet sauvignon: the contribution of Ecklonia maxima seaweed extract

Biostimulants and biofertilizers are considered environmentally friendly and cost-effective alternatives to synthetic fertilizers, plant growth regulators and crop improvement products. Broadly, plant biostimulants are expected to improve nutrient use efficiency, tolerance to abiotic stress, quality traits and availability of nutrients in the soil or rhizosphere. Currently, seaweed extracts account for more than 33% of the total plant biostimulant market. Within this category, Ascophyllum nodosum (AN), is the most widely studied and applied in biostimulant formulations.