terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Exploring the genetic diversity of leaf flavonoids content in a set of Iberian grapevine cultivars: preliminary results

Exploring the genetic diversity of leaf flavonoids content in a set of Iberian grapevine cultivars: preliminary results

Abstract

The use of grapevine genetic diversity is a way to mitigate the negative impacts of climate change on viticulture systems. Leaf epidermal flavonoids (including flavonols and anthocyanins) are involved in plant defense mechanisms against environmental stresses, like high temperatures or excessive solar radiation [1,2]. Among other factors, they modulate light absorption, which reduces photoinhibition processes in photosynthetic tissues [1]. Therefore, the identification of grapevine cultivars with an increased content on leaf epidermal flavonoids arises as a potential avenue to improve grapevine tolerance to some detrimental environmental stresses. Here, we analyzed the content in leaf flavonols and leaf anthocyanins at full-veraison in 63 genetically diverse grapevine cultivars from different Iberian regions grown under the same conditions by two alternative optical sensors (Dualex and MPM-100). Both non-invasive systems proved to be able of estimating leaf epidermal flavonoids content in a wide set of cultivars of high genetic diversity, providing highly-correlated results. Whilst we observed a moderate range of variation for leaf flavonols (they were found to vary by a 1.5-fold factor), a higher range of variation was observed for leaf anthocyanins, which varied by a 15.0-fold factor. In addition, this screening allowed us to detect some cultivars with a significant higher content on leaf epidermal flavonols than some widely extended grapevine cultivars, suggested as potential candidates with better adaptation capacity to the expected conditions due to climate change.

Acknowledgements: This work is part of the project “Diversidad genética en la vid y adaptación al cambio climático” (PID2020-120183RB-I00), funded by MCIN/AEI/10.13039/501100011033.

References:

1)  Steyn, W.J. et al. (2002) Anthocyanins in vegetative tissues: a proposed unified function in photoprotection. New Phytol., 155: 349-361, DOI 10.1046/j.1469-8137.2002.00482.x 

2)  Daryanavard, H.et al. (2023) Flavonols modulate plant development, signaling, and stress responses. Curr. Opin. Plant Biol., 72: 102350, DOI: 10.1016/j.pbi.2023.102350

DOI:

Publication date: October 6, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Javier Tello1*, Yolanda Ferradás1,2, Javier Ibáñez1

1 Instituto de Ciencias de la Vid y del Vino, Finca La Grajera, Ctra. de Burgos Km. 6, 26007 Logroño
2 Facultad de Biología, Universidad de Santiago de Compostela, 15872 Santiago de Compostela

Contact the author*

Keywords

anthocyanins, climate change, flavonols, non-invasive phenotyping, Vitis vinifera

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

is the overall ecological awarness among Spanish winemakers related to their attitudes towards natural wines?

The Agenda 2030 of the EU sets out the main guidelines for transitioning towards a resilient, green and safe economy. To this regard, the wine sector is experiencing an ecological transition in different ways such as increasing the production of ecological crops, or promoting the production of wines under more environmental-friendly and healthier (i.e., lower levels of SO2) products. These alternatives to conventional production are a smaller proportion of wines, in constant growth and demand, and follow alternative and minority practices, which range from sustainable to deeply philosophical thoughts. Among these methods there are organic, biodynamic and, more recently, natural wines.

Effect of ultraviolet B radiation on pathogenic molds of grapes

The fungicidal effect of UV-C radiation (100-280 nm wavelength) is well known, but its applicability for the control of pathogenic molds of grapes is conditioned by its effect on the host and by the risks inherent in its handling[1].
As an alternative, the effect in vitro of UV-B radiation (280-315 nm) on the main pathogenic molds of grapes has been studied: Botrytis cinerea, Aspergillus niger, Penicillium expansum and Rhizopus stolonifer.

Vineyard management practices to reduce sugar content on ‘Monastrell’ grapes

Climate change is resulting in more dry and hot summers, accelerating grape ripening and increasing berry sugars concentration. This results in wines with a higher alcohol content, which has a negative impact on wine quality, as well as, on consumer health. Agronomic practices that minimize these effects on berry composition and, consequently, on wine quality must be defined. In this work, different management practices have been assessed on rainfed ‘Monastrell’ grapevines in Jumilla (Murcia, Spain) from 2021 to 2023 vintages. Mulching, shading, application of kaolin and different types of pruning were evaluated, among others field adaptation practices.

Biotic and abiotic factors affecting physiological aspects underlying vegetative vigour in two commercial grapevine varieties

Grapevine vigour, defined as the propensity to assimilate, store and/or use non-structural sugars for allowing fast growth of shoots and producing large canopies[1], is crucial to optimize vineyard management. Recently, a model has been proposed for predicting the vigor of young grapevines through the measurement of the vegetative growth and physiological parameters, such as water status and gas exchange[2]. Our objectives were (1) to explore the influence of the association of two grapevine varieties (Tempranillo and Cabernet Sauvignon, grafted onto R110 rootstocks) with arbuscular mycorrhizal fungi (AMF) on the vegetative vigour of young plants; and (2) to assess the effect of environmental factors linked to climate change on the vegetative vigour of Cabernet Sauvignon.

Acceptability of canned wines: effect of the level of involvement of consumers and type of wine

In recent years there has been a growing demand for alternative packaging designs in the food industry focused on diminishing the carbon footprint. Despite the environmental advantages of cans versus bottles, the traditional environment of wine has hindered the establishment of less contaminant containers. In this context, the objective of this study was to understand and generate knowledge about consumers´ perception of canned wines in comparison to bottled wines.