terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 REGAVID a decision tool to deficit irrigation in a temperate climate (DO Monterrei – Spain)

REGAVID a decision tool to deficit irrigation in a temperate climate (DO Monterrei – Spain)

Abstract

In temperate climates, such as in the North of Spain, the use of irrigation in the vineyard has not been required, due to the usual rainfall from June to August. In some large vineyards, irrigation management has been carried out, based on occasional support irrigation, or for the application of nutrients (fertigation). Currently it is necessary to implement decision support models to manage irrigation water in real time and avoid misuse of a scarce resource. Moreover, quality standards must be achieved, as in the previous rainfed viticulture. The develop model, REGAVID, linked to an Operational Group in Galicia – Spain, include the characterization of soil physical properties, plant canopy, meteorological data, as well as the irrigation system. The calibration of crop coefficients has been carried out in a commercial vineyard of the DO Monterrei (Spain), in 2022, taking into account the crop evapotranspiration throughout the vegetative-productive cycle. Based on the measurements of soil water (potential and content), and the weather forecast for a week ahead, the irrigation starts parameters have been programmed, as well as the weekly irrigation dose.

The use of continuous measurement sensors, Watermark, at different depths allows knowing the dynamics of water in the soil and establishing thresholds to manage the irrigation. The irrigation management support system allows defining a different deficit irrigation strategy depending on vineyard stage and the season.

In conclusion, flexible irrigation management tools are key for irrigation management in temperate climates, even more so with mostly sandy and fast-draining soils.

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Cancela J.J.1*, Franco D.2, Rey D.2, Gay J.A.2, Tubío M.3, Martínez X.3, Rodríguez-Febereiro M.1, Fandiño M.1

1 GI-1716. Universidade de Santiago de Compostela. Campus Terra, Lugo, Spain
2 MONET Tecnología e Innovación SL. Rúa Das Pontes 4, 36350 Nigrán, Pontevedra, Spain
3 Bodegas Martín Códax. Burgáns 91 – 36633 Vilariño, Cambados – Pontevedra

Contact the author*

Keywords

decision support system 1, scheduling irrigation 2, Godello 3, soil sensors 4

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Physicochemical behaviour of wine spirit and wine distillate aged in Sherry Casks® and Brandy casks

Brandy is a spirit drink made from “wine spirit” (<86% Alcohol by Volume – ABV; high levels of congeners and they are mainly less volatile than ethanol), it may be blended with a “wine distillate” (<94.8%ABV; low levels of congeners and these are mainly more volatile than ethanol), as long as that distillate does not exceed a maximum of 50% of the alcoholic content of the finished product[1]. Brandy must be aged for at least 6 months in oak casks with <1000L of capacity. During ageing, changes occur in colour, flavour, and aroma that improve the quality of the original distillate.

Unveiling a hidden link: does time hold the key to altered spectral signatures of grapevines under drought?

Remote sensing technology captures spectral data beyond the visible range, making it useful for monitoring plant stress. Vis-NIR (Visible-Near Infrared) spectroscopy (400-1000 nm) is commonly used to indirectly assess plant status during drought. One example is the widespread use of normalized difference vegetation index (NDVI) that is strongly linked to green biomass. However, a knowledge gap exists regarding the applicability of this method to all the drought conditions and if it is a direct correlation to the water status of the plant.

Control of bacterial growth in carbonic maceration winemaking through yeast inoculation

Controlling the development of the bacterial population during the winemaking process is essential for obtaining correct wines[1]. Carbonic Maceration (CM) wines are recognised as high-quality young wines. However, due to its particularities, CM winemaking implies a higher risk of bacterial growth: lower SO2 levels, enrichment of the must in nutrients, oxygen trapped between the clusters… Therefore, wines produced by CM have slightly higher volatile acidity values than those produced by the destemming/crushing method[2].

The influence of pre-heatwave leaf removal on leaf physiology and berry development

Due to climate change, the occurrence of heatwaves and drought events is increasing, with significant impact on viticulture. Common ways to adapt viticulture to a changing climate include site selection, genotype selection, irrigation management and canopy management. The latter mentioned being for instance source-sink manipulations, such as leaf removal, with the aim to delay ripening.

Prediction of aromatic attributes of red wines from its colour properties 

Wine perception is a multisensory experience that makes use of the sight, smell, and taste senses. When wine is sensorially assessed, the stimulus received generates multiple signals that tasters convert into organoleptic descriptors. Colour is commonly the first attribute evaluated during wine tasting. Moreover, the colour properties provide the taster with a priori information of the wine’s aroma. This preconceived perception is later confirmed or denied during the aroma evaluation.