terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 REGAVID a decision tool to deficit irrigation in a temperate climate (DO Monterrei – Spain)

REGAVID a decision tool to deficit irrigation in a temperate climate (DO Monterrei – Spain)

Abstract

In temperate climates, such as in the North of Spain, the use of irrigation in the vineyard has not been required, due to the usual rainfall from June to August. In some large vineyards, irrigation management has been carried out, based on occasional support irrigation, or for the application of nutrients (fertigation). Currently it is necessary to implement decision support models to manage irrigation water in real time and avoid misuse of a scarce resource. Moreover, quality standards must be achieved, as in the previous rainfed viticulture. The develop model, REGAVID, linked to an Operational Group in Galicia – Spain, include the characterization of soil physical properties, plant canopy, meteorological data, as well as the irrigation system. The calibration of crop coefficients has been carried out in a commercial vineyard of the DO Monterrei (Spain), in 2022, taking into account the crop evapotranspiration throughout the vegetative-productive cycle. Based on the measurements of soil water (potential and content), and the weather forecast for a week ahead, the irrigation starts parameters have been programmed, as well as the weekly irrigation dose.

The use of continuous measurement sensors, Watermark, at different depths allows knowing the dynamics of water in the soil and establishing thresholds to manage the irrigation. The irrigation management support system allows defining a different deficit irrigation strategy depending on vineyard stage and the season.

In conclusion, flexible irrigation management tools are key for irrigation management in temperate climates, even more so with mostly sandy and fast-draining soils.

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Cancela J.J.1*, Franco D.2, Rey D.2, Gay J.A.2, Tubío M.3, Martínez X.3, Rodríguez-Febereiro M.1, Fandiño M.1

1 GI-1716. Universidade de Santiago de Compostela. Campus Terra, Lugo, Spain
2 MONET Tecnología e Innovación SL. Rúa Das Pontes 4, 36350 Nigrán, Pontevedra, Spain
3 Bodegas Martín Códax. Burgáns 91 – 36633 Vilariño, Cambados – Pontevedra

Contact the author*

Keywords

decision support system 1, scheduling irrigation 2, Godello 3, soil sensors 4

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Applicability of spectrofluorometry and voltammetry in combination with machine learning approaches for authentication of DOCa Rioja Tempranillo wines

The main objective of the work was to develop a simple, robust and selective analytical tool that allows predicting the authenticity of Tempranillo wines from DOCa Rioja. The techniques of voltammetry and absorbance-transmission and fluorescence excitation emission matrix (A-TEEM) spectroscopy have been applied in combination with machine learning (ML) algorithms to classify red wines from DOCa Rioja according to region (Alavesa, Alta or Oriental) and category (young, crianza or reserva).

Adsorption of tetraconazole by organic residues and vineyard organically-amended soils 

Spain is the country with the largest wine-producing area in the EU and its productivity is largely controlled applying fungicides. However, residues of these compounds can move and contaminate surface and groundwater. The objective of this work was to evaluate the capacity of bioadsorbents from different origin to adsorb and immobilize tetraconazole by themselves or when applied as organic soil amendment, and to prevent soil and water contamination by this fungicide. The adsorption of tetraconazole by 3 organic residues: spent mushroom substrate (SMS), green compost (GC) and vine pruning sawdust (VP), as well as by vineyard soils unamended and amended individually with these residues at 1.5% (w/w) was evaluated using the batch equilibrium technique.

Genetic study of wild grapevines in La Rioja region

Since the mid-1980s, several surveys have been carried out in La Rioja to search for populations of the sylvestris grapevine subspecies (Vitis vinifera L. subsp. sylvestris Gmelin). The banks of the Ebro River and its tributaries (Alhama, Cidacos, Leza, Iregua, Najerilla, Oja and Tirón rivers), as well as the surrounding vegetation of their valleys have been covered. So far, all the populations found are alluvial, forming part of the riparian vegetation of the Najerilla (the first reported population in La Rioja [1]), Iregua, and the vicinity of Oja valleys.

Can yeast cells sense other yeasts beyond competition interactions?

The utilization of non-Saccharomyces yeasts in the wine industry has increased significantly in recent years. Alternative species need commonly be employed in combination with Saccharomyces cerevisiae to avoid stuck fermentation, or microbial spoilage. The employment of more than one yeast starter can lead to interactions between different species with an impact on the outcome of wine fermentation. Previous studies[1] demonstrated that S. cerevisiae elicits transcriptional responses with both shared and species-specific features in co-culture with other yeast species.

Use of UHPH to improve the implantation of non-Saccharomyces yeasts

Ultra High-Pressure Homogenization (UHPH) is a high-pressure pumping at 300 MPa (>200 MPa) with a subsequent depressurization against a highly resistant valve made of tungsten carbide covered by ceramic materials or carbon nanoparticles. The intense impact and shear efforts produce the nano-fragmentation of colloidal biopolymers including the elimination of microorganism (pasteurization or sterilization depending on in-valve temperature) and the inactivation of enzymes.