terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 REGAVID a decision tool to deficit irrigation in a temperate climate (DO Monterrei – Spain)

REGAVID a decision tool to deficit irrigation in a temperate climate (DO Monterrei – Spain)

Abstract

In temperate climates, such as in the North of Spain, the use of irrigation in the vineyard has not been required, due to the usual rainfall from June to August. In some large vineyards, irrigation management has been carried out, based on occasional support irrigation, or for the application of nutrients (fertigation). Currently it is necessary to implement decision support models to manage irrigation water in real time and avoid misuse of a scarce resource. Moreover, quality standards must be achieved, as in the previous rainfed viticulture. The develop model, REGAVID, linked to an Operational Group in Galicia – Spain, include the characterization of soil physical properties, plant canopy, meteorological data, as well as the irrigation system. The calibration of crop coefficients has been carried out in a commercial vineyard of the DO Monterrei (Spain), in 2022, taking into account the crop evapotranspiration throughout the vegetative-productive cycle. Based on the measurements of soil water (potential and content), and the weather forecast for a week ahead, the irrigation starts parameters have been programmed, as well as the weekly irrigation dose.

The use of continuous measurement sensors, Watermark, at different depths allows knowing the dynamics of water in the soil and establishing thresholds to manage the irrigation. The irrigation management support system allows defining a different deficit irrigation strategy depending on vineyard stage and the season.

In conclusion, flexible irrigation management tools are key for irrigation management in temperate climates, even more so with mostly sandy and fast-draining soils.

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Cancela J.J.1*, Franco D.2, Rey D.2, Gay J.A.2, Tubío M.3, Martínez X.3, Rodríguez-Febereiro M.1, Fandiño M.1

1 GI-1716. Universidade de Santiago de Compostela. Campus Terra, Lugo, Spain
2 MONET Tecnología e Innovación SL. Rúa Das Pontes 4, 36350 Nigrán, Pontevedra, Spain
3 Bodegas Martín Códax. Burgáns 91 – 36633 Vilariño, Cambados – Pontevedra

Contact the author*

Keywords

decision support system 1, scheduling irrigation 2, Godello 3, soil sensors 4

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Foliar application of urea improved the nitrogen composition of Chenin grapes

The nitrogen composition of the grapes directly affects the developments of alcoholic fermentation and influences the final aromatic composition of the wines. The aim of this study was to determine the effect and efficiency of foliar applications of urea on the nitrogen composition of grapes. This study was carried out during 2023 vintage and in the Chenin vineyard located in Estacion Experimental Mendoza (Argentina). Three urea concentrations 3, 6 and 9 Kg N/ha (C1, C2, and C3, respectively) and control (T) were applied in this vineyard at veraison.

Influence of irrigation frequency on berry phenolic composition of red grape varieties cultivated in four spanish wine-growing regions

The global warming phenomenon involves the frequency of extreme meteorological events accompanied by a change in rainfall distribution. Irrigation frequency (IF) affects the spatial and temporal soil water distribution but its effects on the phenolic composition of the grape have been scarcely studied. The aim of this work was to evaluate the effects of four deficit irrigation frequencies of 30 % ETo: one irrigation per day (T01), two irrigations per week (T03), one irrigation per week (T07) and one irrigation every two weeks (T15) on berry phenolic composition at harvest.

Identification of several glycosidic aroma precursors in six varieties of winemaking grapes and assessment of their aroma potential by acid hydrolysis

In winemaking grapes, it is known that most aroma compounds are present as non-volatile precursors, such as glycosidic precursors. In fact, there is strong evidence supporting the connection between the content of aroma precursors and the aromatic quality of wine [1]. Acid hydrolysis is preferred to reveal the aroma potential of winemaking grapes, as it predicts more accurately the chemical rearrangements occurring during fermentation in acidic environments [2]. In this study, a method involving a fast fermentation followed by acid hydrolysis at 75ºC was used to evaluate the accumulation of aroma compounds over time in fractions obtained from six different varieties of winemaking grapes.

Volatile composition of Cabernet Sauvignon wines from Argentina, Portugal and Spain

Cabernet Sauvignon is one of the most cultivated grape varieties worldwide being grown in different environmental conditions due to its excellent adaptability. Volatile compounds deeply contribute to the sensory properties of wines therefore to wine quality. The aim of this work was to compare the aroma profile of Cabernet Sauvignon wines from different geographical areas and climatic conditions, namely from Argentina, Portugal and Spain, from the vintage 2022. In addition, the volatile composition of the Cabernet Sauvignon Portuguese wines from three vintages was evaluated.

Biotype diversity within the autochthonous ‘Bobal’ grapevine variety

Bobal is the second most widely grown Spanish red grape variety (54,165 has), mainly cultivated in the Valencian Community and especially, in Utiel-Requena region (about 67% of 34,000 has). In this study, agronomic and enological parameters were determined in 98 biotypes selected during 2018 and 2019 in more than 50 vineyards over 50 years-old in the Utiel-Requena region. Moreover, a multi-criteria approach considering temperature and rainfall (Fig. 1A), among other parameters, was made to establish three different zones within the region (Fig. 1B), where in the future the selected biotypes will evaluated. In fact, in 2020, 4 replicates and 12 vines per biotype were planted in an experimental vineyard to preserve this important intra-cultivar diversity.